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ABSTRACT

For linear stochastic time-varying state space models with Gaussian noises, this paper investigates state
estimation for the scenario where the input variables of the state equation are not fully observed but
rather the input data are available only at an aggregate level. Unlike the existing filters for unknown
inputs that are based on the approach of minimum-variance unbiased estimation, this paper does not
impose the unbiasedness condition for state estimation; instead it incorporates a Bayesian approach to
derive a modified Kalman filter by pooling the prior knowledge about the state vector at the aggregate
level with the measurements on the output variables at the original level of interest. The estimated state
vector is shown to be a minimum-mean-square-error estimator. The developed filter provides a unified
approach to state estimation: it includes the existing filters obtained under two extreme scenarios as its
special cases, i.e., the classical Kalman filter where all the inputs are observed and the filter for unknown
inputs.

State space models

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

State space modeling is widely used in various engineering
fields. It also plays an important role in econometrics for time
series analysis and forecasting (see, e.g. West & Harrison, 1997)
with applications to economics, finance, and marketing, such
as modeling arbitrage pricing and exchange rates (Priestley,
1996; Wells, 2010), and modeling sales growth and brand
awareness (Wierenga, 2010). Recently it has also become a very
popular approach to variable-coefficient regression modeling in
econometrics.

In practice, modeling and decision-making depend on the
availability of data measured on the variables of interest. The
classical Kalman filter, a technique commonly used in state space
models for rapidly updating the estimated state vector, considers
an extreme scenario where all the input variables are observed.
Recently, considerable attention has also been paid to the other
extreme scenario where no input information is available: a
set of recursive formulas has been derived via the approach
of minimum-variance unbiased estimation. See Darouach and
Zasadzinski (1997), Gillins and De Moor (2007) and Kitanidis
(1987), among many others, for the recent development.

* The material in this paper was not presented at any conference. This paper
was recommended for publication in revised form by Associate Editor Wolfgang
Scherrer under the direction of Editor Torsten Soderstrom.

E-mail address: b.li2@lboro.ac.uk.

1 Tel.: +44 1509 22884; fax: +44 1509 223960.

0005-1098/$ - see front matter © 2012 Elsevier Ltd. All rights reserved.
doi:10.1016/j.automatica.2012.12.007

This paper complements the aforementioned methods and in-
vestigates state estimation when the input variables in state space
models are not fully observed but rather they are available only
at an aggregate level. This is a problem that has been recognized
for a long time but has not yet been satisfactorily solved. In the
literature there are three commonly used approaches: (a) the un-
observed input variables are assumed to have little impact on the
state variables so they are ignored; (b) an extra model is stipulated
for the unobserved input variables; (c) the entire state space model
is built at the aggregate level rather than at the level of interest.

For the first approach, the assumption that the unobserved
input variables are ignorable may not be realistic in applications,
and thus it can cause considerably large modeling errors. For traffic
density estimation, for instance, Gazis and Liu (2003) assumed that
lane changes of vehicles were not common and hence lane-change
maneuvers, as the inputs of their state space model, were ignored.
As aresult, the modeling errors will become large for the roadways
with substantial lane-changes.

With respect to the second approach, one commonly used
method is to treat the unknown inputs as a stochastic process with
a known description (known mean and covariance, for example)
or as a constant bias (see, e.g. Friedland, 1969; Ignani, 1990;
Zhou, Sun, Xi, & Zhang, 1993). Because more assumptions must be
imposed, it is in general not an ideal solution when little is known
about the input variables. For example, in the study of Australian
state populations in Doran (1996), the net migration arrivals at the
individual state level were treated as the input variables. These
input variables, however, are not directly observed in non-census
years. Doran (1996) assumed that they follow an AR(1) process and
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the coefficients of the AR(1) lags are common for all the states.
Clearly, these assumptions are difficult to validate due to the lack
of data. Kitanidis (1987) also discussed applications in geophysical
and environmental fields where one cannot make any assumptions
about the evolution of the unknown input variables.

Although the third approach is numerically feasible, Kalman
filtering at an aggregate level may not be able to provide
sufficient information for the problems under investigation. For
instance, some existing studies in traffic studies (e.g., Wang &
Papageorgiou, 2005) consider traffic modeling at an aggregate
level, the segment level, where the traffic across all different
lanes within a roadway segment was aggregated and modeled.
Consequently, this approach is unable to provide lane-level traffic
information which is crucial for some applications such as incident
detection.

In this paper we assume that the unknown inputs at the level
of interest have substantial impact on the system and they are not
ignorable. In addition, we do not impose any extra assumptions on
the unobserved inputs. Rather, we will develop a new method that
makes use of the partially observed inputs to estimate the current
state variables at the level of interest.

Although most of the recent studies on state estimation for
unknown inputs have used the approach of minimum-variance
unbiased estimation, we will incorporate a Bayesian approach in
this paper. Bayesian analysis can be used to derive the classical
Kalman filter (see, e.g. West & Harrison, 1997), and it is also a
convenient method for generalizing the classical Kalman filter to
solve more complicated nonlinear and/or non-Gaussian problems;
see, e.g. the non-Gaussian Kalman filter in Li (2009) and the particle
filter in Simon (2006).

We will show that Bayesian inference is a natural way to handle
partially available input information. Unlike the existing studies
(e.g. Darouach & Zasadzinski, 1997; Gillins & De Moor, 2007 and
Kitanidis, 1987), there is no need to impose the unbiasedness
condition in this paper. We show that under the assumption of
Gaussian noise terms, the developed filter is optimal in the sense
of minimum mean square error within the class of all estimators
having a finite second moment. The Bayesian approach used in this
paper neither makes any assumptions on the input variables nor
directly estimates them at each time point (as done in Gillins and
De Moor (2007), for instance). Instead, the prior knowledge about
the state vector contained in the state equation is aggregated to the
level at which the inputs are observed, which is then pooled with
the current measurements on the outputs via Bayesian inference
so that the estimated state vector is updated at each time step.
We also show that the resulting recursive formulas provide a
unified filtering approach for the problem where the availability
of the input information ranges from all to nothing. In particular,
it includes the classical Kalman filter (where all input variables are
observed) and the filter for unknown inputs as its special cases.

2. Problem formulation and examples

2.1. Notation

Consider a linear discrete-time stochastic time-varying system
in the form

Xip1 = Arxy + Grdy + wy, (1
Yk = CXy + v, (2)

where Xy = [X14, ..., xn,k]T € R" is the state vector, dy = [dq,

.., dmi]" € R™is the input vector,and yx = [y1k, - - -, Yprl” € RP
is the measurement vector at each time step k. The process noise
wy € R" and the measurement noise vy € RP are assumed to be
mutually independent, and each follows a Gaussian distribution
with zero mean and a known covariance matrix, Q. = E [wkw,f]

> 0and R, = E [vkv[] > 0 respectively. Following the existing
studies, we further assume that the initial state x, is independent
of wy, and vy, with a known mean X, and covariance matrix Py > 0.

We investigate the scenario where the input vector dj is not
fully observed at the level of interest. Instead some (or all) input
data are available only at an aggregate level. Specifically, let Dy be
a qx x m known matrix with 0 < g, < m and Fy, an orthogonal
complement of Dz. It is assumed that the input data are available
only on some linear combinations Dydj:

T = Dydy, (3)

where 1y is observed at each time step k, and no information about
8k = Fj,dy is available. Hence, § is assumed to have a nonin-
formative distribution, i.e., it has a probability density function
f (8x) for which all values of §; are equally likely to occur:

f(8) o 1. (4)

The matrix Dy characterizes the availability of input information
at each time step k. It includes two extreme scenarios that are of
practical importance: (a) when g, = 0, Dy is an empty matrix and
thus no information on the inputs is available. This is the scenario
investigated in Darouach and Zasadzinski (1997), Gillins and De
Moor (2007) and Kitanidis (1987); (b) when g, = m and Dy is an
identity matrix, it corresponds to the case that the complete input
information is available. This is the case that the classical Kalman
filter applies to. In some applications, the dimension g, may vary
from time to time. For instance, in economics and many other social
sciences, the input data may be available at a microscopic level
during census years but only at an aggregate level during non-
census years.

To illustrate the scenario that input variables are partially
observed, two examples are considered below, both involving a
state equation of the following form:

i1 = Xig + di + Ui+ wig (5)

2.2. Estimation of Australian state populations

The study in Doran (1996) considered using the state space
Eq. (5) to characterize the dynamic nature of the evolution of
Australian state populations, where x; ; represents the population
of state (or territory)iinyeark, u; i is the observed natural increase

(births minus deaths), and w; \ is the corresponding error term. a,-,k
is the net migration arrivals in state i in year k. In non-census years
the net migration arrivals are observed only at the national level.
Hence, it is the linear combination of the net migration arrivals of
the individual states, Y I, d; i, that is available. Now we define the

input variables to be d; = d;k + u;. So for this problem, the
individual input variables d; (i = 1, ..., n) in non-census years
are observed only at an aggregate level (national level) and the
matrix Dy in Eq. (3) is a row-vector of ones, whereas in census years
allinputsd; (i = 1, ..., n) are observed so Dy is an identity matrix.

2.3. Estimation of traffic densities

Intelligent transport systems for traffic surveillance require
some fundamental information including traffic density. Traffic
density is defined as the number of vehicles that occupy one unit
length of road space per lane. Here we focus on a road segment
with n lanes that is a detection zone with an upstream detector
and a downstream detector at the entrance and exit of each
lane respectively (see, e.g. Gazis & Liu, 2003). The two detectors
count the vehicles passing through. See Li (2009) for a detailed
description of the detectors.

The traffic conservation Eq. (5) is commonly used in the
literature, where x; , denotes the total number of vehicles in lane i
at time step k, and u; ; represents the difference in the numbers
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