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We propose a distributed optimization algorithm for mixed .£;/L£;-norm optimization based on
accelerated gradient methods using dual decomposition. The algorithm achieves convergence rate O((iz),
where k is the iteration number, which significantly improves the convergence rates of existing duality-
based distributed optimization algorithms that achieve O( %). The performance of the developed algorithm
is evaluated on randomly generated optimization problems arising in distributed model predictive control

(DMPC). The evaluation shows that, when the problem data is sparse and large-scale, our algorithm can
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outperform current state-of-the-art optimization software CPLEX and MOSEK.
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1. Introduction

Gradient-based optimization methods are known for their
simplicity and low complexity within each iteration. A limitation of
classical gradient-based methods is the slow rate of convergence. It
can be shown (Bertsekas, 1999; Nesterov, 2004) that for functions
with a Lipschitz-continuous gradient, i.e.,, smooth functions,
classical gradient-based methods converge at a rate of O(%), where
k is the iteration number. In Nemirovsky and Yudin (1983) it was
shown that a lower bound on the convergence rate for gradient-
based methods is O(-%). Nesterov showed in his work (Nesterov,
1983) that an accelerated gradient algorithm can be constructed
such that this lower bound on the convergence rate is achieved
when minimizing unconstrained smooth functions. This result
has been extended and generalized in several publications to
handle constrained smooth problems and smooth problems with
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an additional non-smooth term (Beck & Teboulle, 2009; Nesterov,
1988, 2005; Tseng, submitted for publication). Gradient-based
methods are suitable for distributed optimization when they are
used in combination with dual decomposition techniques.

Dual decomposition has been a well-established concept
since around 1960 when Uzawa’s algorithm (Arrow, Hurwicz,
& Uzawa, 1958) was presented. Similar ideas were exploited
in large-scale optimization (Danzig & Wolfe, 1961). Over the
next decades, methods for decomposition and coordination of
dynamic systems were developed and refined (Findeisen, 1980;
Mesarovic, Macko, & Takahara, 1970; Singh & Titli, 1978) and
used in large-scale applications (Carpentier & Cohen, 1993). In
Tsitsiklis, Bertsekas, and Athans (1986) a distributed asynchronous
method was studied. More recently dual decomposition has been
applied in the distributed model predictive control literature
in Doan, Keviczky, and De Schutter (2011); Doan, Keviczky,
Necoara, Diehl, and De Schutter (2009), Giselsson and Rantzer
(2010) and Negenborn, De Schutter, and Hellendoorn (2008) for
problems with a strongly convex quadratic cost and arbitrary linear
constraints. The above mentioned methods rely on gradient-based
optimization, which suffers from slow convergence properties
O(%). Also the step size parameter in the gradient scheme must be
chosen appropriately to get good performance. Such information
has not been provided or has been chosen conservatively in these
publications.

In this work, we improve on the previously presented
distributed optimization methods by using an accelerated gradient
method to solve the dual problem instead of a classical gradient
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method. We also extend the class of problems considered by
allowing an additional sparse but non-separable 1-norm penalty.
Such 1-norm terms are used as regularization term or as penalty
for soft constraints (Savorgnan, Romani, Kozma, & Diehl, 2011).
Further, we provide the optimal step size parameter for the
algorithm, which is crucial for performance. The convergence rate
for the dual function value using the accelerated gradient method
is implicitly known from Beck and Teboulle (2009) and Tseng
(submitted for publication). However, the convergence rate in the
dual function value does not indicate the rate at which the primal
iterate approaches the primal optimal solution. In this paper we
also provide convergence rate results for the primal variables.

Related to our work is the method presented in Necoara and
Suykens (2008) for systems with a (non-strongly) convex cost. It
is based on the smoothing technique presented by Nesterov in
Nesterov (2005). Other relevant work is presented in Kogel and
Findeisen (2011) and Richter, Jones, and Morari (2009) in which
optimization problems arising in model predictive control (MPC)
are solved in a centralized fashion using accelerated gradient
methods. These methods are, however, restricted to handle only
box-constraints on the control signals.

To evaluate the proposed distributed algorithm, we solve ran-
domly generated large-scale and sparse optimization problems
arising in distributed MPC and compare the execution times to
state-of-the-art optimization software for large-scale optimiza-
tion, in particular CPLEX and MOSEK. We also evaluate the perfor-
mance loss obtained when suboptimal step lengths are used.

The paper is organized as follows. In Section 2, the problem
setup is introduced. The dual problem to be solved is introduced
in Section 3 and some properties of the dual function are
presented. The distributed solution algorithm for the dual problem
is presented in Section 4. In Section 5 a numerical example is
provided, followed by conclusions drawn in Section 6.

2. Problem setup

In this paper we present a distributed algorithm for optimiza-
tion problems with cost functions of the form

1
](X)z5x’Hx+gT><+yllPx—pll1. (1)

The full decision vector, x € R", is composed of local decision
vectors, x; € RM, according to x = [x],...,x},]". The
quadratic cost matrix H € R™" is assumed separable, i.e, H =
blkdiag(H4, ..., Hy) where H; € R"*", Further, H is assumed
positive definite with o (H)I < H < 6(H)I, where 0 < o(H) <
6 (H) < oo. The linear part g € R" consists of local parts, g =
lgl, ..., g1 where g € R". Further, P € R™" is composed of
P=[Py,...,Py]",whereeachP, = [P], ..., P! 1" € R"andP; €
R".We do not assume that the matrix P should be block-diagonal
which means that the cost function ] is not separable. However, we
assume that the vectors P, have sparse structure. Sparsity refers
to the property that for each r € {1,..., m} there exist some
ie{1,...,M}suchthat P; = 0. We also have p = [p1, ..., pml"
and y > 0. This gives the following equivalent formulation of (1)
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Minimization of (1) is subject to linear equality and inequality
constraints

A1x = By, Axx < B,
where A; € R7" and A, € R6~9*" contain q; € R" as A; = [a;,
....aq]" and Ay = [ag1, ..., a]". Further, each q; = [a],, ...,

aﬂw]T where a; € R". Further we have B; € R?and B, € R*¢

where By = [by,...,bg]" and By = [bg41, ..., bs]". We assume
that the matrices Ay and A, are sparse. By introducing the auxiliary
variables y and the constraint Px — p = y we get the following
optimization problem

- 11 T
min X Hx+g'x+ ylylh

Xy

s.t. A1X = 31 (3)
Axx < By
Px—p=y.

The objective of the optimization routine is to solve (3) in
a distributed fashion using several computational units, where
each computational unit computes the optimal local variables,
denoted x;, only. Each computational unit is assigned a number of
constraints in (3) for which it is responsible. We denote the set of
equality constraints that unit i is responsible for by £}, the set of
inequality constraints by £l? and the set of constraints originating
from the 1-norm by ;. This division is obviously not unique but all
constraints should be assigned to one computational unit. Further
forl € £! and ! € £? we require that a; # 0 and forr € R;
that P; # 0. Now we are ready to define two sets of neighbors to
computational unit i

No={je{l,....M}|TeLsta#0

ordle £ st.aj # 0ordr € R;s.t. Py # 0},
M= {jef{l,....M}|TeLsta#0

ordle e£j2 st.a; # 0or 3r € R;s.t. Py # 0}.

Through the introduction of these sets, the constraints that are
assigned to unit i can equivalently be written as

ax=b & Zafjxj =b, ledL] (4)
JEN;

a,Tx <b & Za,zjj <b, le inz (5)
JEN;

and the 1-norm term can equivalently be written as

D P =D

JeNi

IP/x — py| = , TER. (6)

In the following section, the dual function to be maximized is
introduced. First, we state an assumption that will be useful in the
continuation of the paper.

Assumption 1. We assume that there exists a vector x such that
A1Xx = by and AyX < b,. Further, we assume thata;,, [ = 1,...,q
and P;, r = 1, ..., mare linearly independent.

Remark 2. Assumption 1is known as the Mangasarian-Fromovitz
constraint qualification (MFCQ). In Gauvin (1977) it was shown
that MFCQ is equivalent to the set of optimal dual variables
being bounded. For convex problems, MFCQ is equivalent to
Slater’s constraint qualification with the additional requirement
that the vectors defining the equality constraints should be linearly
independent.

3. Dual problem

In this section we introduce a dual problem to (3) from which
the primal solution can be obtained. We show that this dual
problem has the properties required to apply accelerated gradient
methods.
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