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A B S T R A C T

In the authors’ earlier work [1], a component length scale control functional was proposed to regulate the
topology evolution with uniform thickness distribution; however, the sensitivity result was numerically calcu-
lated with certain approximation. In order to make this functional better work for complex design problems, the
sensitivity result is now analytically calculated with the aid of the structural skeleton-based non-signed distance
level set field. More importantly, this component length scale control functional has been upgraded to eliminate
the need of pre-specifying the length scale target. By using control functional instead of constraints, a benefit is
that the structural performance and length scale control effect can be balanced by the weight factor, because it is
not always necessary to strictly achieve the uniform thickness distribution while drastically compromising the
structural performance. Therefore, this work studies the uniform thickness control in a multi-objective manner.
Effectiveness of the proposed method is proved through a few 2D and 3D numerical case studies.

1. Introduction

Topology optimization has been extensively studied for several
decades. It has demonstrated the power in addressing multi-disciplinary
structural optimization problems and has been widely accepted by
commercial CAE systems as an important module [2]. So far, there are
mainly three branch methods for continuum topology optimization: the
SIMP (Solid Isotropic Material with Penalization) [3], level set [4,5],
and ESO (Evolutionary Structural Optimization) [6]. SIMP method uses
the element densities as the topology variable which are continuously
varied driven by the sensitivity information. Level set is an interface-
based approach where the material/void or material/material interface
is evolved based on the sensitivity information. ESO adopts the element
densities as the design variable similar to SIMP method; distinctively, it
employs the hard-kill strategies to remove materials and rewarding
strategies to re-introduce materials (the Bi-directional ESO). A large
number of publications can be found about these methods which proves
their effectiveness in addressing a variety of topology optimization
problems, including minimizing stress, maximizing stiffness, and max-
imizing frequency, etc. Related literature surveys can be found in
[3,7,8]. On the other hand, topology optimization is still not fully-de-
veloped in several aspects, especially considering the manufactur-
ability-related issues. In the other words, the output of topology opti-
mization has often been criticized for being too organic, which are

costly in manufacturing or even non-manufacturable. Tremendous ef-
forts have been spent on fixing this problem and a review paper [9] was
recently published which presents the state-of-art of the manufactur-
ability-oriented topology optimization.

Among the many manufacturability-related issues, length scale
control is a long-lasting and challenging topic tightly associated with
part manufacturability. For instance, uniform component thickness
distribution is especially meaningful for injection molding, which fa-
cilitates uniform cooling to reduce warpage-type part defect [1]. As for
machining, the component length scale should not be too small in order
to avoid the machining instability, and the void length scale should also
be constrained to guarantee the machine tool accessibility [10]. So far,
length scale control has mainly been explored under the SIMP [11] and
level set [4,5] frameworks.

Under the SIMP framework, Poulsen [12] developed the local in-
tegral constraints to address the minimum length scale control of both
the component and void phases, which principally checked the mono-
tonic density variations. Zuo et al. [13] utilized a minimum hole size
constraint to remove the small hole features from the topology design.
Guest et al. [14] developed a circular density filter, which coupled with
the Heaviside function, realized the minimum component length scale
control. Later, in order to realize the length scale control of both the
component and void phases, a modified double Heaviside projection
was developed [15]. Sigmund [16] developed a series of morphology-
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based density filters which realized both the single-phase and double-
phase minimum length scale controls. However, as mentioned in the
same paper, the sensitivity analysis of the double-phase minimum
length scale control is costly, and its cost is even comparable with finite
element analysis (FEA). Based on the erode and dilate operations, a
robust topology optimization method [17–19] was developed, where
multiple design realizations were evaluated and the worst case was
optimized. The double-phase minimum length scale control can be
achieved in the case that the multiple realizations maintain a consistent
topology [17,19,20]. A limitation of this method is that multiple FEAs
are performed in each optimization loop.

Other than the minimum length scale control, Guest et al. [21]
realized the maximum component length scale control by restricting
any circular areas in diameter of the maximum length scale not fully
filled. Zhang et al. [22] realized the simultaneous maximum and
minimum component length scale control through the structural ske-
leton based constraints.

Level set method is also effective in length scale control, especially
given the signed distance information, which greatly facilitates the
length scale measure and control. Chen et al. [23] and Luo et al. [24]
employed a quadratic energy functional as part of the objective func-
tion, which successfully realized the strip-like topology design with
controlled thickness. Liu et al. [1] developed a simplified length scale
control functional to realize the close-to-uniform rib thickness dis-
tribution. Guo et al. [25] realized the concurrent maximum and
minimum component length control through the structural skeleton
based constraints which is principally similar to [22]. The signed dis-
tance information facilitated the narrow-band structural skeleton ex-
traction and related global constraints were constructed to restrict the
component length scales. Xia and Shi [26] modified the structural
skeleton based method. The trimmed structural skeleton and the con-
cept of maximal inscribable ball were employed to evaluate the length
scale. Discrete point-based structural skeleton was extracted instead of
a narrow band which facilitated the distance evaluation from skeleton.
In this way, the length scale constraints were directly applied to the
structural boundary points. Allaire et al. [27] explored the length scale
control in depth under different schemes of maximum length scale only,
minimum length scale only, and the simultaneous control. A few dif-
ferent-typed constraints and penalty functional were compared and
discussed. Zhang et al. [28] recently developed the component
minimum length scale control method based on the level set-based
Moving Morphable Component (MMC) method. Wang et al. [29] rea-
lized the component length scale control through addressing the con-
tour-offset based constraints. Very recently, Liu et al. [10] proposed the
minimum void length scale control method which constrained the void
length scales by double lower bounds, so that the topology design can
be milled by a rough-to-finish process. To the best of the authors’
knowledge, this is the only work conducted so far to control the void
length scale under the level set framework. Literature surveys on length
scale control can be found in [9,30].

Even extensively studied, there is still room for further development
of the length scale control technique. This research work is conducted
under the level set framework, and thus, a discussion is made below to
present the pros and cons of the existing level set-based length scale
control methods. Contributions of this paper is highlighted, as well.

(i) So far, the length scale control has been realized in two ways: by
using constraints or penalty functional. Generally, by setting the
constraints, the derived component length scale can accurately fall
into the designated range; while by using the penalty functional,
the component length scale is loosely constrained and may slightly
deviate from the pre-specified length scale value; see [23]. In
practice, it is not always necessary to strictly restrict the length
scale at the cost of over compromised structural performance.
Therefore, we use the penalty functional and formulate the opti-
mization problem into a multi-objective form, where a series of

design solutions with differently balanced structural performance
and length scale control effect could be derived. The length scale
control functional previously proposed in [1] is adopted, which
employs a simple domain integration expression and its physical
meaning is easy to understand.

(ii) Different from [1], the length scale control functional is solved in a
more accurate manner, which works well on complex design pro-
blems.

(iii) To realize the multi-objective purpose, a weight factor is added to
the length scale control functional, and three strategies are ex-
plored to control the variation of the weight factor to derive the
best design effect.

(iv) The existing length scale control methods generally pre-specify the
targeted length scale value or range. However, it is non-trivial to
manually determine this target, which at most times, relies on the
trial-and-error approach. Therefore, this paper addresses this issue
by upgrading the length scale control functional proposed in [1],
which still supports the uniform thickness distribution while the
need for pre-specifying the length scale target is eliminated.

2. Level set based length scale control

2.1. Basic introduction to level set function

Level set function, Φ(X): Rn ↦R, represents any structure in the
implicit form, as:
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where Ω represents the material domain, D indicates the entire design
domain, and thus D/Ω represents the void.

Generally, the level set field satisfies the signed distance regulation
through solution of Eq. (2), through which absolute of the level set
value at any point represents its shortest distance to the structural
boundary and the sign indicates the point to be either solid (> 0), or
void (< 0).

∇ =XΦ( ) 1 (2)

2.2. Level set based topology optimization

Under the level set framework, the compliance-minimization to-
pology optimization problem is formulated in Eq. (3).
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In Eq. (3), the structural compliance (sum of the strain energy
densities) is to be minimized. a(u, v, Φ) is the energy bilinear form and l
(v, Φ) is the load linear form, which together form the weak form of the
governing equation. For the symbols in the problem formulation, u is
the deformation vector, v is the test vector, and Uad={v ∈
H1(Ω)d|v=0 on ΓD} is the space of kinematically admissible displace-
ment field; D is the elasticity tensor and e(u) is the strain; Vmax is the
upper bound of the material volume; H() and δ() are the Heavisde
function and the Dirac Delta function, which are applied to realize the
domain and boundary integrations, respectively.

The Augmented Lagrange Multiplier method is applied and the
adjoint sensitivity analysis is performed to solve this optimization
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