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A B S T R A C T

This paper presents a novel automated higher-order (HO) unstructured triangular mesh generation of the two-
dimensional domain. The proposed HO scheme uses the nodal relations obtained from subparametric trans-
formations with parabolic arcs, especially for curved geometry. This approach is shown to drastically simplify
the computational complexities involved in the HO finite element (HOFE) formulation of any partial differential
equation (PDE). The prospective generalised MATLAB 2D mesh generation codes, HOmesh2d for the regular
domain and CurvedHOmesh2d for a circular domain are based on the MATLAB mesh generator distmesh of
Persson and Strang. As an input, the code takes a signed distance function of the domain geometry and the
desired order for the triangular elements and as outputs, the code generates an HO triangular mesh with element
connectivity, node coordinates, and boundary data (edges and nodes). The working principle of HOFE scheme,
using subparametric transformations with the proposed HO automated mesh generator is explained. The sim-
plicity, efficiency, and accuracy of the HOFE method, with the proposed HO automated mesh generator up to 28-
noded triangular elements, are illustrated with elliptic PDE. The proposed techniques are applied to some
electromagnetic problems. The use of higher order elements from the proposed mesh generator is shown to
increase the accuracy and efficiency of the numerical results. Also, with the proposed HOFE scheme it is verified
that HO elements significantly decrease the numbers of degrees of freedom, and elements required to achieve a
specific level of accuracy compared to lower order elements. Numerical results show that the HO elements
outperform the lower order elements in terms of efficiency and accuracy of the numerical results.

1. Introduction

In real life situation, most of the engineering models have complex
curved geometries and finding an approximate solution using any nu-
merical technique has always been challenging. Finite Element Analysis
has become very popular to the modern engineer due to the increase in
computational resources, for solving such complex problems [1–8].
Mesh generation, which is the first step, is a crucial prerequisite in Fi-
nite element method (FEM) as well as in many other applications (like
computer graphics, scientific computing).

The objective of the present work is to provide a simple automated
mesh generation code in MATLAB using HO triangular elements for any
regular or curved geometries. This approach will be very useful to solve
large-scale engineering problems in Mechanical, Aerospace, Civil,
Biomechanics, and Electromagnetic etc. According to Ergatoudis et al.
[9] and Babuska et al. [10], mesh with HO elements is proved to ac-
celerate the accuracy, stability, and efficiency of computational pro-
cesses for solving various applications in FEM. Numerical accuracy and

efficiency of HO elements for the analysis of models containing curved
boundaries using subparametric transformations are demonstrated in
[11–19].

In [11] the isoparametric point transformations by the parabolic or
cubic curves in the standard triangle are developed. Later, a better point
transformations called the subparametric mapping (parabolic arcs) to
match curved boundaries for HO triangular elements was used in
[14–17]. Further, these developments were put into practical use in
[15–19]. Though the earlier works proved the efficiency and accuracy
of using HO elements in FEM especially for curved geometries, an HO
automatic mesh generator for curved boundaries remained a challenge.
All the available mesh generating codes are very complex and uses ei-
ther linear or quadratic triangular elements. Therefore, the available
codes are difficult to integrate with other FEM codes. Although trian-
gular elements up to quadratic order have been used extensively in the
literature, the application of HO elements has received much less at-
tention, presumably because of the complexities related to the mesh
optimization, and computational difficulties which arise in finite
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element formulations of a PDE. In the FEM formulation of a second
order linear PDE using one sided curved triangular elements, we come
across integrals of rational functions with denominators that are high
order bivariate polynomials. While using isoparametric transformation
for HO one side curved triangular elements, we get the Jacobian of the
transformation as a bivariate polynomial of order ≥ 2. Hence, the in-
tegrand that arises in the finite element formulation of the PDE will be
complex to evaluate. To avoid this difficulty, we use the subparametric
transformation with parabolic arcs, the Jacobian of which will always
be a bivariate linear polynomial for any HO one sided curved triangular
element (cubic, quartic, quintic, sextic etc.)[14–18]. Thus, finite ele-
ment applications can be efficiently and easily carried out by using
subparametric transformations with the proposed simple automated HO
mesh generator in MATLAB with unstructured triangles for any regular
or curved geometry.

The proposed MATLAB functions for two-dimensional mesh gen-
eration using HO triangular elements are HOmesh2d for regular do-
mains and CurvedHOmesh2d for circular domains. The MATLAB func-
tion CurvedHOmesh2d can be easily modified for any irregular or curved
domain.

The proposed code is based on a simple and efficient MATLAB mesh
generation code distmesh developed by Persson and Strang [20]. Their
algorithm typically produces high-quality meshes and compared to
other meshing techniques, it is shorter and simpler. Koko [21] has
proposed a simple unstructured mesh generator based on distmesh, and
a fast refinement procedure kmg2d and kmg2dref for finite element
applications in MATLAB. HOmesh2d and CurvedHOmesh2d work with
either distmesh or kmg2d. The geometrical description of the domain has
to be simplified by the signed distance functions as seen in [20]. We
have provided the complete proposed MATLAB functions, HOmesh2d
and CurvedHOmesh2d in Appendix A.2 and A.3.

In this paper, the automated Lagrange interpolation functions gen-
eration as per the required node distribution proposed for the mesh
generator is described in Section 2, and the developed complete MA-
TLAB function Gen_LagSF is given in Appendix A.1. In Section 3, we
present the detailed explanation of the MATLAB fragment of the pro-
posed 2D HO mesh generator HOmesh2d and CurvedHOmesh2d for the
quartic case. Mesh generation of the other HO triangular elements is
obtained likewise. Later in Section 4, we have illustrated in a flowchart,
the finite element application of the proposed HO mesh generator. This
flowchart will facilitate any MATLAB user to develop generalized and
efficient code to solve easily any PDE using HO elements. The results of
the proposed procedure are provided for elliptic PDE with few nu-
merical examples focused on the application in Electromagnetics. It is
shown that using the proposed HO 2D mesh generators, HOmesh2d and
CurvedHOmesh2d any PDE can be comfortably solved using un-
structured triangular elements for finite element applications, which
significantly improves accuracy and efficiency of the method by using
subparametric transformation with parabolic arcs for curved

geometries.

2. Automatic Lagrange shape functions generation

In finite element analysis, interpolation functions are used to ex-
press the variation of the field variable within an element by its nodal
values as in [14]:
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where u is the field variable at any point within the element, uk
e are the

nodal values of u for each element and the interpolation functions (Nk)
is referred to triangular element shape functions or basis polynomials of
order n at the node k. In FEM, we need to transform each triangular
element to a standard (or master) triangular element in order to sim-
plify the numerical integrations, for which the expression for numerical
integration is feasible. The standard triangle is an isosceles right-angled
triangle with equal sides being unity. This element is shown in Fig. 1.
The coordinates (ξ, η) are called as natural coordinates and the co-
ordinates (x, y) are called Cartesian coordinates.

Lagrange interpolation functions are widely used in practice. In Eq.
(1), the assumed functions take on the same values as the given func-
tions at specified points. For HO elements simpler and suitable shape
functions can be derived using Lagrange interpolation polynomials. For
one-dimensional case, Lagrange interpolation functions at node i is
defined by,
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It is clear from (2) that for an element with n nodes, Li(x) or Li(ξ) will
have −n 1 degrees of freedom (DOF). Similarly, Lagrange interpolation
functions for two-dimensional elements can be derived as the product
of one-dimensional Lagrange interpolation functions. Thus, for two-
dimensional elements, Lagrange shape functions are denoted by Ni(x, y)
or Ni(ξ, η) and are defined as

=N ξ η L ξ L η( , ) ( ) ( ).i i i

We have developed an automated Lagrange shape functions generation
MATLAB function Gen_LagSF. The distribution of the nodes over the
area of the sextic order triangle in the Cartesian −x y or natural −ξ η
plane is as shown in Fig. 2 below:

Gen_LagSF.m generates and displays the generalised Lagrange coef-
ficients and shape functions for triangular elements up to octic order in
anticlockwise sequence for the nodes distributed as shown in Fig. 2 (see
Appendix A.1).

Fig. 1. 3-node linear triangular element mapped into the stan-
dard (master) triangle.
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