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A B S T R A C T

Recent advances in computer and sensing technologies have led to the proliferation of sensor networks in
structural health monitoring and condition monitoring applications.

Vibration data collected by sensors provide useful information about the condition of a structure or a machine
component, facilitating identification of any changes in its performance. While acceleration and displacement
data provide complementary information, a cost-effective alternative to monitoring both is to estimate dis-
placements from accelerations. This paper presents a kernel regression approach for obtaining displacement time
series from acceleration data. Starting from a second-order central difference approximation, the method per-
forms ridge regression in a feature space induced by the linear kernel. The main advantages of the proposed
method are (1) It does not require baseline adjustment, other than removing the mean of the acceleration record;
(2) The solution obtained is numerically stable, and thus regularization is not necessary; (3) The reconstructed
displacement does not exhibit any long period drift. The validity of the proposed method is demonstrated
through examples, where structural systems’ displacements computed using the proposed approach were
compared to the recorded experimental displacements. While the presented examples focus only on monitoring
of vibrations responses of structural systems, the proposed method can be used in other settings where a dis-
placement signal is to be estimated from an acceleration signal with appropriate, application-specific mod-
ifications.

1. Introduction

With recent advances in sensing technology and wireless commu-
nication, the last few decades have seen a dramatic increase in the use
of sensor networks for structural health monitoring and condition
monitoring applications. Analysis of sensor data provides useful in-
formation about the condition of a structure or a machine component,
enabling engineers and inspectors to identify and monitor any changes
in its performance.

Estimation of a displacement time series from an acceleration record
is an important task in vibration monitoring. While it is possible to
measure displacements using, for example, the linear variable differ-
ential transformer, direct measurement of displacement is often in-
convenient and costlier than measurement of acceleration, especially
when displacements at different points on the structure or the machine
are needed. Estimation of displacements from accelerations is a cost-
effective alternative to direct measurement.

While the mathematical relationship between displacement and
acceleration is simple, problems arise in practical applications. Exact

computation of displacement from acceleration requires not only the
closed-form equation of the acceleration expressed as a function of time
but also the initial values of the velocity and displacement. In practice,
acceleration data is often available in discrete form (digitally recorded,
or digitized from analog records), and the initial displacement and
velocity are unknown.

A common concern when a displacement history is to be obtained
using numerical integration, is the accumulation of error with each
integration step. Numerical integration will amplify low-frequency
noise in the acceleration signal, resulting in low-frequency drifts in the
estimated displacement. While large distortions can be eliminated using
low-cut filtering, given the sensitivity of the estimated displacements to
the specifics of the filter used, proper selection of the low-cut filter and
its associated parameters remains a critical issue. The same conclusion
can be extended to baseline adjustment techniques, which effectively
perform low-cut filtering, although the frequency domain character-
istics of the corresponding filter may be implicit.

Hong et al. [1] formulated a new approach for estimating the dis-
placement signal from the acceleration signal by converting the initial

http://dx.doi.org/10.1016/j.advengsoft.2017.10.011
Received 27 July 2017; Received in revised form 28 September 2017; Accepted 18 October 2017

* Corresponding author.
E-mail addresses: jale@siu.edu (J. Tezcan), cmarin@howard.edu (C.C. Marin-Artieda).

Advances in Engineering Software xxx (xxxx) xxx–xxx

0965-9978/ © 2017 Elsevier Ltd. All rights reserved.

Please cite this article as: Tezcan, J., Advances in Engineering Software (2017), http://dx.doi.org/10.1016/j.advengsoft.2017.10.011

http://www.sciencedirect.com/science/journal/09659978
https://www.elsevier.com/locate/advengsoft
http://dx.doi.org/10.1016/j.advengsoft.2017.10.011
http://dx.doi.org/10.1016/j.advengsoft.2017.10.011
mailto:jale@siu.edu
mailto:cmarin@howard.edu
http://dx.doi.org/10.1016/j.advengsoft.2017.10.011


value problem to a boundary value problem. This results in an inverse
problem which is ill-posed and thus does not have a unique solution.
Using Tikhonov regularization, they make the boundary value problem
well-posed, making it admit a unique solution. An additional potential
benefit of regularization is to reduce the effect of measurement noise in
the acceleration signal, by encoding a preference toward smaller dis-
placement values.

In this paper, we propose a kernel-based alternative to the reg-
ularization scheme derived by Hong et al. The proposed method uses
Least Square Support Vector Machine (LSSVM) to solve the problem in
a kernel-induced feature space, eliminating the issue of rank deficiency,
thereby ensuring the uniqueness of solution without the necessity of
regularization.

The rest of the paper is organized as follows. Section 2 briefly dis-
cusses the problem of displacement reconstruction from measured ac-
celeration data, recasts the problem as an ill-posed boundary value
problem, and shows that the resulting problem can be solved using
Tikhonov regularization, as suggested by Hong et al. [1]. Section 3
introduces the Least Square Support Vector Machine (LSSVM) approach
to the same problem. In our formulation, the solution is obtained in the
feature space without the need for regularization. While regularization
is not needed to correct the ill-posedness of the problem, we include an
optional regularization factor which allows performing regularization
for reasons not related to numerical stability, i.e. when it is suspected
that the acceleration data contains measurement noise. Section 4 de-
monstrates applications of the proposed method on monitoring vibra-
tions of structural systems. Section 5 presents a discussion of the lim-
itations of the method. Using challenges specific to processing of strong
motion data as an example, it is stressed that successful application of
the proposed method to different problems may require additional
steps, depending on the specifics of the acceleration signal and the goal
of processing. Section 6 concludes the paper.

2. Estimation of displacement from measured acceleration

This section reviews two existing approaches to the problem of
displacement reconstruction from a measured acceleration record. The
equations below use the following notation: Vectors are shown in bold
italic, matrices in bold, and scalars in italic. By default, vectors are
column vectors, and the superscript T denotes transpose operation.

Given a discretized acceleration signal a=[a1,a2,…, aN]T, the
corresponding velocity signal v=[v1,v2,…, vN]T and the displacement
signal d=[d1,d2,…, dN] can be estimated using numerical integration,
provided that initial conditions are known. For example, Newmark-β
method uses
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where ̂vi and ̂di are the estimated velocity and displacement at the ith
time step, β and γ are integration parameters corresponding to the as-
sumed manner of variation of acceleration, and Δt is the time step.

Numerical integration often fails to produce realistic displacement
estimates. A common problem is the low-frequency drift in the resulting
displacement history. Fig. 1 illustrates the drift problem which occurs
when the displacement history is obtained via double integration of
acceleration. The experimental data in Fig. 1 corresponds to the ac-
celeration and displacement responses at the second floor of a forced
vibration test of a two-story reinforced concrete frame. A horizontal
input excitation was applied at the top of the frame through a linear
inertial shaker [2].

To date, various accelerogram processing procedures have been
proposed to obtain realistic displacement estimates (e.g. [3–6]). The
displacement reconstruction task can also be viewed as a boundary
value problem. Consider the problem of estimating acceleration from a
measured displacement signal d using the second-order central

difference approximation ̂ = − + +− +a d d d t E( 2 )/(Δ )i i i i1 1
2 where E is

the local truncation error O((Δt)2). The corresponding matrix equation
for the estimation of an m-term segment of an acceleration signal can be
written as ̂=d atB (Δ )2 , where ̂ ̂ ̂̂ = …a a a a[ , , , ]m1 2

T is the estimated ac-
celeration vector within an m-point time window [t1,t2,…, tm], and B is
the m× (m+2) matrix
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Thus, the m-term acceleration vector can be computed uniquely
from the (m+2)-term displacement vector via the matrix equation
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The terms d0 and dm+1 in the displacement vector falling outside
the time window act as fictitious nodes that enable computation of the
acceleration at the boundaries of the time window, i.e. at t= t1 and at
t= tm.

Fig. 1. Comparison of measured displacement and the calculated displacement obtained
via double integration of acceleration.
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