
Contents lists available at ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier.com/locate/advengsoft

Research paper

Engineering design analysis utilizing a cloud platform

Sunil Suram, Nordica A. MacCarty, Kenneth M. Bryden*
Department of Mechanical Engineering, Iowa State University, 1620 Howe Hall, Ames, IA, 50011, United States

A B S T R A C T

In this paper we present a novel methodology for modeling engineered and other systems based on integrating a
set of component models that are accessible as “model-as-a-service” components within a cloud platform. These
component models can be combined together to form a systems model. The component models are stateless and
web-enabled. The advantage of being web-enabled is that developers can use the models as API endpoints as
opposed to library components, hence making the models themselves language agnostic and less restrictive in
their use. These ideas are presented within the context of a previously published engineering model for the
thermal analysis and preliminary design of a small biomass cookstove. In this paper the monolithic biomass
cookstove model is separated into six independent, stateless component models supported by a generic model
application infrastructure. Interaction between the models is orchestrated by a federated model system. Finally,
the results of the cookstove from the monolithic model were compared with the distributed systems model. It
was found that there was no change in the results. However, the systems model increased the time-to-solution
due to network latency. However, the ability to share models and data via API endpoints, will likely offset the
overall wall-clock time for model integration, since model developers do not have to make code changes. In
conclusion, it is advantageous to build web-enabled component models for their easy reuse across multiple
systems models.

1. Introduction

Engineered systems are generally composed from interdependent
components that are themselves composed of other subcomponents.
Because of this, the representation and analysis of the detailed inter-
actions within and between the components comprising these en-
gineered systems is critical. However, holistic modeling of these sys-
tems is challenging [2]. This is in part due to the size and complexity of
detailed systems models and in larger part because of the need to or-
ganize and integrate a collection of models representing each of the
components and subcomponents of the system into a single coherent
information artifact. This is particularly challenging because in many
cases each of the component and subcomponent models are developed
by separate teams of analysts (or individual analysts) with differing
domain knowledge, differing modeling practices, and differing ex-
pectations as to the outcomes of the modeling and analysis process.

Integrated modeling [13,19] seeks to address these challenges and
“includes a set of interdependent science-based components (models,
data, and assessment methods) that together form the basis for con-
structing an appropriate modeling system” [13]. In a traditional mod-
eling approach, the individual component models are linked with each
other using software/code. In many scientific and engineering

applications each of the submodels is incorporated as a subroutine
within the larger systems code. In other cases each of the models is a
software library that exposes application programming interfaces
(APIs) [17]. All the linking occurs in a single software program that
brings together the individual models, including problem specific en-
tities like initial conditions, boundary conditions and information/data
transfer between models, all of which must be mediated and controlled
by the applications developer.

One way of overcoming the problem of building and modeling
large-scale systems models is by taking an integration framework based
approach, where each individual model is part of a larger framework of
models [23]. There are a wide range of integration frameworks which
are based on coupling the models together by linking the inputs and the
outputs together in the manner of message passing between the com-
ponent packages (i.e., models) in a way that requires adherence to a
given data standard or requires user intervention to identify and
manage the data flow. The environmental modeling community has
been active in the development of a number of general purpose model
integration tools [13]. All of these systems require models to have in-
itialize, run, finalize, get, and set functions for basic control over the
models; provide a code-based method for connecting the models to-
gether, using some form of XML file or some other type of configuration

http://dx.doi.org/10.1016/j.advengsoft.2017.10.004
Received 31 March 2017; Received in revised form 19 September 2017; Accepted 18 October 2017

* Corresponding author.
E-mail address: kmbryden@iastate.edu (K.M. Bryden).

Advances in Engineering Software xxx (xxxx) xxx–xxx

0965-9978/ © 2017 Elsevier Ltd. All rights reserved.

Please cite this article as: Suram, S., Advances in Engineering Software (2017), http://dx.doi.org/10.1016/j.advengsoft.2017.10.004

http://www.sciencedirect.com/science/journal/09659978
https://www.elsevier.com/locate/advengsoft
http://dx.doi.org/10.1016/j.advengsoft.2017.10.004
http://dx.doi.org/10.1016/j.advengsoft.2017.10.004
mailto:kmbryden@iastate.edu
http://dx.doi.org/10.1016/j.advengsoft.2017.10.004


file, to create a low-level model-to-model interface; and require an
agreed upon global ontology describing the variables passed between
models. Nearly all of these general purpose integration frameworks
require that the models in the system use the same programming lan-
guage.

One approach to overcoming the challenges of model integration
frameworks is to develop loosely coupled and decentralized systems
similar to a web-based application that, for example, predicts turnout at
a public event based on location, weather, and traffic conditions. Each
of the services (public event listing, weather, and traffic conditions) is
an independent information service accessed over the Internet. Each of
these services is developed independently of the others without making
any assumptions or following common data interchange protocols. Only
the service that combines the data from each of the three information
services needs to know the protocol emitted by each service it is ac-
cessing. At a future date if the wrapper service needs to add, say, public
transportation information, it can do so by calling yet another service
that publishes this new piece of information. This can be done without
renegotiating previously established protocols. Such a decentralized
approach leads to a service-oriented architecture with cleaner inter-
faces and data transfer between each service [22].

In this article, a novel approach to developing a loosely coupled and
decentralized integrated modeling environment appropriate for en-
gineering and scientific computing is proposed, which is based on a
federation of independent models each of which is an independent web-
based model service (i.e., an information artifact) accessible via a web
API using interaction protocols chosen by the model developer. In the
proposed framework, this collection of independent models is joined
together in a federation which describes a particular system. In this
way, a complex system model can be built by bringing together mul-
tiple individual models and can be deployed as a system model.
Furthermore, the developed models within the federation do not have
any schema imposed on the structure of inputs and outputs by the de-
veloper. The model developer decides the structure of inputs and out-
puts that the model accepts and emits, the only requirement being that
this information be broadcast to model developers via API calls. In this
way a component model can be used as-is in multiple systems models.
The communication between constituent models is orchestrated by a
federation management system (FMS).

For such a decentralized system of models to be functional and
scalable a cloud-based architecture is the most practical solution. The
primary reasons for this are

• Universal availability—Cloud platforms can be accessed by anyone
with a web browser and an Internet connection. This opens up the
possibility for model developers to build and publish their models
either as part of a closed group or globally regardless of their geo-
graphic location.

• Scalable platforms—As more models are added the computational
resources can be increased automatically without human interven-
tion. The deployed models need to be readily available every time
the FMS sends a request for computation.

• Cost effective—Cloud platforms work on a cost per usage model and
are hence cost effective because the user only pays for the compute
time and not for procuring, provisioning, and maintaining the
compute, storage, and networking resources.

2. Background

2.1. Cloud computing

Over the last few years with the rise of cloud computing, it has
become easier to obtain compute cycles on an on-demand basis [1].
Several companies have built data centers and technology platforms
using commercial off-the-shelf hardware and are making them avail-
able over the Internet. This has enabled applications to scale

dynamically to support millions of concurrent users for consumer ap-
plications. The same technology platforms are now being used in tra-
ditional enterprise applications, blurring the difference between con-
sumer and enterprise applications [8]. Software vendors now host
thousands of applications in the cloud that can be accessed by its users
through a web-browser. Cloud computing eliminates the purchase of
expensive processors, networking, and storage resources by making
them available over the Internet [1]. The availability of high-end
hardware on an on-demand basis makes it possible to move many types
of engineering, scientific, and HPC applications and workflows into the
cloud. This has opened up new opportunities for creating novel scien-
tific, data management, analysis, and visualization applications that
leverage the performance capabilities offered by cloud computing.
Engineering modeling and scientific computing problems can now be
solved by leveraging cloud-computing capabilities. By harnessing the
computing power of the cloud, smaller form-factor devices can also be
integrated into engineering workflows and perform operational tasks in
the field that might not be currently possible. It also becomes possible
to scale applications at a lower cost per processing/computing unit [3].

Several researchers ([12,21,28], as well as commercial entities
[1,18] have made attempts to run HPC workloads on cloud computing
resources. Data from astronomical measurements was processed uti-
lizing cloud computing resources from Amazon, Nimbus, and Eu-
calyptus by provisioning cloud computing resources, mapping work-
loads to them, and de-provisioning the resources on completion [28].
They found that cloud computing can be a viable solution for several
scientific computing problems. As part of their research they also
concluded “being able to add and remove resources at runtime outweighs
the networking and system management overheads.” A platform for sci-
entific computing was developed and used for simulations in materials
science [12] using the Amazon Elastic Compute Cloud (EC2) [1] to
develop an Amazon Machine Image that was the primary underlying
technology for their platform. The authors solved two problems in
materials simulations that involved loose and tight coupling of codes.
They found that although the Amazon EC2 platform is not efficient for
the transfer of large amounts of data, it is competitive in achieving the
speedups similar to that provided by Infiniband clusters. A big data
platform for scientific workflows was developed and used to solve an
image processing problem [29]. They also compared the efficacy of
multiple cloud platforms for performance, price, and ease of provi-
sioning and management of compute resources.

A series of experiments were developed to evaluate the Amazon EC2
infrastructure as an alternative for many-task computing workloads [10].
Although the authors found that the overall performance of commercial
cloud hardware is low compared to dedicated HPC resources, they un-
derscore the fact that commercial clouds can fill the gap for temporary
and instant need for compute resources. HPC clusters were extended
using EC2-based cloud clusters by Belgacem and Chopard [4]. They
found that with a load-balancing strategy they were able to benefit from
utilizing the cloud computing resources, as opposed to merely adding
more machines to an existing cluster. The authors used MPI-based
models that were coupled and executed in a distributed manner.

The researchers above primarily have used cloud computing in-
stances to extend existing HPC hardware and augment the time-to-so-
lution for their specific scientific problems. Commercial cloud hardware
was found lacking in some instances [28], but several researchers have
acknowledged the power of being able to quickly provision and utilize
on-demand compute resources [4]. Also, most of the computational
workloads have been using traditional models like MPI, but running on
cloud hardware. So most of the problems solved in the literature are
related to comparing performance of existing codes running in the cloud.

2.2. Stateless models

The concept of state is critical to the implementation of the feder-
ated model sets described here. State refers to the entirety of

S. Suram et al. Advances in Engineering Software xxx (xxxx) xxx–xxx

2



Download	English	Version:

https://daneshyari.com/en/article/6961495

Download	Persian	Version:

https://daneshyari.com/article/6961495

Daneshyari.com

https://daneshyari.com/en/article/6961495
https://daneshyari.com/article/6961495
https://daneshyari.com/

