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a b s t r a c t 

This study contributes an investigation and a removal of spurious buckling modes which occur in optimal 

multi-material topology designs of steel composite using MATLAB computational software version 2017a. 

Using multiple steel materials within a structure provides many design possibilities to improve structural 

stability, especially, to prevent buckling phenomenon of the steel structure. Buckling effect and volume 

control are stated as constraints in the minimized compliance multi-material topology optimization prob- 

lem. The multi-phase problem in this study is solved using an alternative active-phase algorithm with 

Jacobi version. The Method of Moving Asymptotes (MMA) is used to update the topology design vari- 

ables which is relative element densities. The advantage of MATLAB software in solving a large number 

of routines problems which are eigenvalue and multi-material calculation routines and the MMA com- 

plex optimizer is shown through the numerical analysis in this study. Two material interpolation schemes 

controlling spurious buckling modes for the single material are modified for the present multi-material 

problem. The efficiency of each modified scheme for single and multiple steel materials are investigated 

and verified in numerical implementation. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

When compressive stresses occur in slender steel structure 

[1,2] , the buckling consideration should be a significant concern 

in safety design. Slenderness often occurs in topology optimiza- 

tion design when prescribed volume fraction is small. Therefore, 

not only volume but also stability requirement is also considered 

as a constraint in topology optimization problem. 

A specific numerical situation in computing topology optimiza- 

tion with buckling eigenproblem is the appearance of eigenmodes 

[3] in void regions. These eigenmodes are called pseudo-modes, lo- 

calized modes or spurious modes [4] . Void regions are not mate- 

rial free but are assigned a very small value of material due to the 

numerical singularity. This is the reason to cause spurious modes 

since they are not only originated in material regions but also in 

void regions. This problem can occur either in stability analysis or 

eigenfrequency analysis when first buckling load factor or eigen- 

frequency is declared as an objective function or constraints [5–7] . 

In topology optimization, instabilities may occur since geometrical 

stiffness is penalized insufficiently. This problem would be avoided 

by appropriately interpolating the elasticity properties of structural 

and geometric stiffness [8] . 
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SIMP interpolation schemes [9] are well suited to solve stiffness 

optimization problems. However, applying these schemes on eigen- 

value optimization problems may result in spurious modes. These 

usually appear as highly localized modes in low-density regions of 

the structure during the optimization process. For SIMP schemes, 

it happens because the generalized density goes to zero, thus gives 

rise to low eigenvalues. 

To obtain an optimal design satisfying design concept of real 

structures, the buckling modes appearing in low-density regions 

make no sense, thus they should be ignored from the topology 

design. The real buckling mode occurring in the material region 

or high relative density region should be only considered. For the 

purpose of ignoring buckling modes in low-density regions, differ- 

ent material interpolation schemes are used for elasticity tensor of 

physical stiffness matrix ( E 

K 
e ) and stress stiffness matrix ( E 

K σ
e ). 

For one material structure, the common interpolation scheme 

Solid Isotropic Material with Penalization (SIMP) [10] based on 

power law is used. This scheme is unwieldy with additional 

materials. Some interpolation schemes were proposed for multi- 

material problem such as the extensions two materials with and 

without void are introduced in [9] or an interpolation scheme of 

multi-material using direct generalizations of SIMP is formulated 

within a unified parametrization [11] . However, in those studies, 

there is no investigation of multi-material interpolation scheme in 

dealing with spurious buckling modes. In this study, two inter- 
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polation schemes removing spurious buckling modes of the sin- 

gle material problem are modified for the present multi-material 

problem. In order to deal with the multiphase problem [12–14] , an 

active-phase algorithm [15] using Jacobi version is utilized in this 

study. 

The computational processes in this study are executed in MAT- 

LAB program, version 2017a which are a high-level programming 

language and interactive environment software. With the versatil- 

ity and user convenience, it has been using widely for academic 

and research purposes [16] . In the field of topology optimization 

method which has apparent complexity, MATLAB well solves many 

different complex problems with very few lines of code [15,17–

19] . Especially, its big advantage is presented through solving the 

large number of routines like eigenvalue problem, complex solvers 

[9] which are main characters of this study. The code used in 

this study is developed based on the 115-line code [15] to solve 

the buckling problem using multi-material topology optimization 

[20,21] . 

In this study, a steel structure with multi-steel materials is con- 

sidered. For simplicity, the multi-steel materials are expressed by 

the difference ratio between each steel type [22] . The properties 

of material are described through Young’s modulus and the Pois- 

son’s ratio of ν = 0.3. In the application of particular structures 

[23,24] , the combination of constructional steel materials can be 

applied for a more reliable investigation [25,26] . The present struc- 

ture is discretized and analyzed using the four-node square finite 

elements. With its simple application and acceptable result with 

coarse mesh for a simple-square structure in this study, it is chosen 

for analyzing the structure to save the computational effort. How- 

ever, for more complicated structure, other approaches and meth- 

ods can be applied in the further researches to enhance the analy- 

sis ability of presented method such as isogeometric analysis [27–

32] , adaptive technique based on ES-FEM and polygonal elements 

[33–35] or cell-based smoothed finite element method [36–39] . 

This study consists of as follow. Section 2 shows the for- 

mulations of multi-material topology optimization. Optimization 

solver of Method of Moving Asymptotes (MMA) and active-phase 

algorithm using Jacobi version are presented. In Section 3 , for- 

mulations of linear elastic buckling problem are given. The fil- 

tering method to avoid checkboard phenomenon is presented 

in Section 4 . Section 5 describes the computational procedure 

of present problem based on MATLAB program. Two modified 

multi-material schemes of removing spurious buckling modes are 

shown in Section 6 . Numerical examples of using the two mod- 

ified schemes for two and three material cases are discussed in 

Section 7 . In Section 8 , finally, conclusions and remarks are de- 

scribed. 

2. Formulations of multi-material topology optimization 

problem 

2.1. Multi-phase topology optimization 

We consider the minimum compliance multi-material topol- 

ogy optimization problem within a fixed two-dimensional de- 

sign domain � ∈ R 

2 which is divided into a finite element 

subdomain �j , j = 1, 2, ..., n . Each subdomain can be materials or 

void as shown in design space schematic of multi-material topol- 

ogy optimization which is described in Fig. 1 . With �m 

s and �m 

v are 

solid design domain of material and void domain in a multi- 

material problem, respectively. m denotes the number of multi- 

material. 

Element densities are set as design variables which can physi- 

cally attain integer values, i.e., αj ∈ {0, 1}. A single element may 

contain multiple material densities corresponding to a number of 

contributed materials p . Volume fraction and buckling load factor 

Fig. 1. Design space schematic of multi-material topology optimization. 

are stated as inequality constraints. Loads are assumed to be quasi- 

static and applied to the non-restrained nodes. The mathematical 

formulation of problem considering buckling effect is as follows 

minimize : 
αi 

C (α, u ) = u 

T Ku 

sub ject to : K (α) u = f 

p ∑ 

i =1 

αi = 1 ∫ 
�

αi dx ≤ V i , (i = 1 , ..., p) 

min 

j∈ J 

∣∣λ j 

∣∣ ≥ λ∗ > 0 

0 < αi min ≤ αi ≤ 1 (i = 1 , ..., p) 

(1) 

where C is the structural compliance, f and u are the global load 

and displacement vector, respectively. K is the global stiffness ma- 

trix and � is the design domain; V i is the volume fraction con- 

straint for material phase i; λj denotes the j th buckling load fac- 

tor and λ∗ is the minimum buckling load factor. αi denotes design 

variables of relative density for each different phases at the ele- 

ment level and αi min is the lower bound of design variables, e.g. 

αi min = 0.001 to avoid numerical singularity in computation. p is 

the number of the material. J denotes the buckling mode index set. 

For the structures which applied loads always stay in the same di- 

rection, in the other word, the load direction does not change dur- 

ing the optimization process. The negative buckling load factors are 

not real, therefore, only the positive buckling load factors should 

be included in set J . 

2.2. Optimization solver 

The ideal method for structural optimization should be flexible, 

general, and able to handle not only element size as design vari- 

ables, but also other variables such as shape and material orien- 

tation angles. It should be able to handle all kinds of constraints. 

The Method of Moving Asymptotes (MMA) is an effective method 

for structural optimization that is based on a special type of con- 

vex approximation [19] . In current topology optimization problem, 

two constraints are applied that are volume and buckling load fac- 

tor constraints. The classical optimizer such as Optimality Criteria 

(OC) method does not well solve for multiple constraints problem 

[9] . While MMA can give a fast and accurate result when solving 

multiple constraints problem [40] . Therefore, MMA is used as a 

solver for this multi-material topology optimization problem. MMA 

procedure requires the update of upper and lower moving asymp- 

totes (L j , U j ) which depend on the design variables αi in every 

main loop. However, the original Gauss-Seidel version for active 

phase algorithm [15] includes an inner loop and results of one tar- 

get phase in binary active phase are used as an initial value to 

calculate the next other binary active phases. The Gauss-Seidel it- 

erations update the design variables sequentially for each binary 

phase in one main loop. Therefore, this causes the conflicts when 
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