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a b s t r a c t

The main result of the paper consists in necessary and sufficient graphical conditions which ensure the
generic discrete mode observability of structured switching descriptor systems. The methods used in the
previous studies on the observability of switching linear systems on standard form are not applicable to
switching descriptor systems. So, we develop a new approach starting from bipartite representations of
these systems and then building a newkind of digraph dedicated to the discretemode observability study.
The proposed method assumes only the knowledge of the system’s structure and is applicable to a large
class of descriptor systems including regular and non-regular systems even if they are square or under-
determined. The provided conditions can be implemented by the classical graph-theory algorithms.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Hybrid systems, combining event-driven and time-driven dy-
namics, have received growing attention in the control commu-
nity as they describe awide range of systems (Johansson&Rantzer,
2007). On the other hand, descriptor systems, which handle sys-
tems with both differential and non-differential relations, result
from a convenient and natural modelling process (Müller, 2000).
Their applications can be found in robotics, electrical networks, bi-
ological and economic systems (Müller, 2000). When the model
representing thewhole ormore generally a part of a system is a sin-
gularmodel (formodelling convenience), the functioning system is
then represented by a switching descriptor system and in order to
check the functioningmode, we have to observe the discretemode
variable of the switching system. Switching descriptor systems are
also particularly suited to handle systems (even in standard form)
where the dynamics of the continuous part is not entirely known in
each discrete mode. Some practical examples where the switching
descriptor models are useful and pertinent are provided in Boukas
(2008), Clotet, Ferer, andMagret (2009) and De Koning (2003). The
paper focuses on the discrete mode observability of switching de-
scriptor systems. The discretemode observability is relevant to de-
tect some abrupt changes due to faults andwhichmake the system
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switching to non nominal dynamics or for supervision when the
switching between differentmodes implies control structuremod-
ifications. Few works deal with the observability of switching de-
scriptor system, whereas the developed approaches used to study
systems in standard form are not directly applicable. Moreover, for
the most part, observability studies use algebraic or geometric ap-
proaches and so require the exact knowledge of the state space
matrices characterizing the systems’ model. In many modelling
problems or during the conception stage, these matrices have a
number of fixed zero entries determined by the physical lawswhile
the remaining entries are not precisely known. In these cases, to
study the structural properties, like observability, the idea is that
we only keep the zero/non-zero entries in the state spacematrices.
Many interestingworks on thesemodels, called structuredmodels,
aim to analyse their properties (Dion, Commault, &VanderWoude,
2003; Murota, 1987; Reinschke, 1988).

The paper is organized as follows: after Section 2, which is
devoted to the problem formulation, some definitions related to
the graph-theoretic approach are given in Section 3. The main
result is provided in Section 4 before a brief conclusion.

2. Problem statement

Consider the following switching descriptor system (SDS)

Σ :


Er(t)ẋ(t) = Ar(t)x(t)
y(t) = Cr(t)x(t)

(1)

where x ∈ Rn and y ∈ Rp are respectively the state vector and
the output (measurement) vector and where Er(t) ∈ Rm×n, Ar(t)
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∈ Rm×n and Cr(t) ∈ Rp×n. In order to guarantee that there exists
at least one trajectory x(t) satisfying the relations defining system
Σ, Er(t)x(0−) is assumed to be admissible i.e. it does not result in
contrary equations in Σ and is such that system Σ is solvable. The
exogenous and unobserved discrete mode variable (or switching
signal) r : [0,∞) → Q = {1, . . . , N}, is assumed, as in Babaali
and Pappas (2005), to be right-continuous and only a finite number
of jumps can occur in any finite interval.

The discrete mode observability is the capacity to deduce the
discretemode knowing themeasurements. It is based on themode
distinguishability:

Definition 1 (Mode Distinguishability). Two distinct modes q ∈ Q
and q′ ∈ Q are distinguishable if, for almost all initial conditions
x0, either there exist an integer s ≥ 0 and an expression fq(y, ẏ,
. . . , y(s)) = 0 which is satisfied for mode q but is not satisfied for
mode q′, or there exist an integer s′ ≥ 0 and an expression fq′(y, ẏ,
. . . , y(s′)) = 0 which is satisfied for mode q′ but is not satisfied for
mode q.

Here, ‘‘ for almost all initial conditions x0’’ is to be understood as
‘‘for all x0 ∈ Rn except for the zero set of some polynomials with
real coefficients in the n initial state components’’ (x0 = 0 for ex-
ample).

Definition 2 (Discrete Mode Observability). Σ is discrete mode
observable if its modes are distinguishable 2-by-2.

Discrete mode observability analysis can then be reduced to the
study of the distinguishability of each pair of modes. Thus, in this
paper, we consider that we have only 2modes. Moreover, since we
study a structural property, it is pertinent to deal with structured
systems, for which we assume that only the sparsity pattern of
matrices Eq, Aq and Cq is known for q ∈ {1, 2}. So, to each entry
of these matrices, we only know whether its value is fixed to zero,
or that it has a non-fixed real value represented by a parameter λi.
The vector of these parameters is Λ = (λ1, λ2, . . . , λh)

T and it is
assumed that Λ can take any value in Rh. We denote by Aλ

q , C
λ
q and

Eλ
q respectively the matrices obtained by replacing the non-zeros

in Aq, Cq and Eq, for q ∈ {1, 2} by the corresponding parameters λi
and we denote

ΣΛ :


Eλ
r(t)ẋ(t) = Aλ

r(t)x(t)
y(t) = Cλ

r(t)x(t).
(2)

If all parameters λi are numerically fixed, we obtain a so-called ad-
missible realization of ΣΛ. We say that a property is true generi-
cally for ΣΛ if it is true for almost its realizations or equivalently
for almost all parameters λi.

For the discrete mode observability analysis, it is pertinent and
necessary to highlight the similarities and the differences between
the models associated to these modes. Indeed, for q ≠ q′, it is not
realistic to assume that all the parameters of Aλ

q , C
λ
q or Eλ

q are free
from the ones of Aλ

q′ , C
λ
q′ or E

λ
q′ . Thus, we decompose each structured

matrix into 2 parts: the first one is common to the 2modes and the
second one is specific to eachmode i.e. for q ∈ {1, 2}, Aλ

q = A0+As
q,

Cλ
q = C0 + C s

q and Eλ
q = E0 + Es

q. We assume that the entries of
these matrices are free and that a coefficient of Aλ

q (resp. Cλ
q and

Eλ
q ) is exclusively in A0 or in As

q (resp. in C0 or in C s
q , and in E0 or

in Es
q). These notations can be extended to the multi-mode case

(Boukhobza & Hamelin, 2011a).

3. Graphical representation and definitions

For eachmode q = 1, 2,we associate to structured systemΣΛ a
bipartite graph noted B(ΣΛ, q) = (V+,V−,Wq), where V+ and V−
are 2 disjoint vertex subsets andWq is the edge set related tomode
q. The vertices are associated to thewhole internal state, dynamical
variables and outputs ofΣΛ and the edges represent links between
these variables for each mode. More precisely, V+ = X and
V− = Y ∪ Z, with X = {x1, x2, . . . , xn}, Z = {z1, z2, . . . , zm}
representing relation z = Eλ

r(t)x and Y = {y1, y2, . . . , yp}.
Edge set is related to each mode q and is defined by Wq =

Aq-edges ∪Cq-edges∪Eq-edges, where Aq-edges =

(xj, xi) | Aλ

q(i, j)
≠ 0


, Cq-edges =


(xj, yi) | Cλ

q (i, j) ≠ 0

and Eq-edges =


(xj,

zi) | Eλ
q (i, j) ≠ 0


. Each edge is associated to a free non-zero

parameter of the system’s model called the weight of the edge.
Number q is written under each edge associated to an element of
specific matrices As

q, C
s
q and Es

q and represents its index. The edges
which are common to the two modes i.e. associated to matrices
A0, C0 and E0 have index 0. The edges which are specific to mode q
have index q.

Example 1. To the system defined by the following matrices, we
associate bipartite graphs in Fig. 1.

A0 =

0 λ1 0 0 0 0
0 0 0 0 0 λ2
0 0 0 λ3 0 0
0 0 0 0 λ4 0

 ,

C0 =

λ5 0 0 0 0 0
0 λ6 0 0 0 0
0 0 λ7 0 0 0
0 0 0 λ8 0 0

 ,

E0 =

λ9 0 0 0 0 0
0 0 0 0 0 λ10
0 λ11 λ12 0 0 0
0 0 0 λ13 0 0

 .

The specific matrices for mode 1 are such that the entries of As
1 are

zero except As
1(3, 1) = λ14, C s

1 = 0 and the entries of Es
1 are zero

except Es
1(2, 3) = λ15. The specific matrices for mode 2 are such

that As
2 = 0, C s

2 = 0 and the entries of Es
2 are zero except Es

2(3, 1)
= λ16.

• Two edges are disjoint if they have no common vertex. Amatch-
ing is a set M of disjoint edges.
• A path P is denoted P = vs0 → vs1 → · · · → vsi , where, for a

given q ∈ {1, 2}, (vsj , vsj+1) ∈ Wq for j = 0, 1, . . . , i − 1. We
say in this case that P covers vs0 , vs1 , . . . , vsi . A path is sim-
ple when every vertex occurs only once. The weight of P is the
product of the weights of all its edges. A cycle is a path of the
form vs0 → · · · vsi → vs0 , where vs0 , . . . , vsi are distinct.
• Let V1 and V2 represent two subsets, P is a V1-topped path if its

end belongs to V1.

Consider now any bipartite graph noted B defined by the triplet
(V+,V−,W ), and let us recall the subdivision of such graph into
ν + 2 partially ordered irreducible components denoted Ci(B) =
(V+i (B),V−i (B),Wi(B)) using the Dulmage–Mendelsohn (DM) de-
composition (Dulmage & Mendelsohn, 1958; Murota, 1987):

# find a maximal matching M in B. We associate to this maximal
matching a non bipartite digraph noted BM = (V+,V−,WM)
where (v1, v2) ∈ WM ⇔ (v1, v2) ∈ W or (v2, v1) ∈ M . We
denote by ∂+M (resp. ∂−M) the set of vertices in V+ (resp. in
V−) covered by the edges ofM . We note S+0 = V+ \∂+M and S−0
= V− \ ∂−M.

# V+0 (B) = S+0 ∪ {v ∈ V+, ∃ a path in BM from S+0 to v}.
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