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a b s t r a c t 

This paper proposes a new non-probabilistic robust topology optimization approach for structures un- 

der interval uncertainty, as a complementarity of the probabilistic robust topology optimization methods. 

Firstly, to avoid the nested double-loop optimization procedure that is time consuming in computations, 

the interval arithmetic is introduced to estimate the bounds of the interval objective function and for- 

mulate the design problem under the worst scenario. Secondly, a type of non-intrusive method using 

the Chebyshev interval inclusion function is established to implement the interval arithmetic. Finally, a 

new sensitivity analysis method is developed to evaluate the design sensitivities for objective functions 

like structural mean compliance with respect to interval uncertainty. It can overcome the difficulty due 

to non-differentiability of intervals and enable the direct application of gradient-based optimization al- 

gorithms, e.g. the Method of Moving Asymptotes (MMA), to the interval uncertain topology optimization 

problems. Several examples are used to demonstrate the effectiveness of the proposed method. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

In the field of structural optimization, topology optimization 

has experienced considerable development over the past two 

decades with a range of applications [1] . Topology optimization 

is essentially a numerical process to optimize a prescribed ob- 

jective function under specific constraints by iteratively distribut- 

ing a given amount of material, until the best layout of the ma- 

terial is obtained in the design domain. Several typical methods 

have been developed for topology optimization of structures, such 

as the homogenization method [2] , the SIMP based methods [3, 

4] , and the level set-based methods (LSMs), e.g. [5–7] , as well as 

the heuristic methods like the evolutionary structural optimization 

(ESO) method and its variants [8, 9] . 

However, the majority of current studies about the topology op- 

timization of structures are based on the deterministic assumption, 

which may result in a design that cannot satisfy the expected de- 

sign goal and even a design that is unfeasible, as most problems in 

engineering inevitably involve various uncertainties, including the 

manufacturing tolerance, load variations, inhomogeneity of mate- 

rial properties, and so on [10] . For a structure, the topological de- 

sign may be quite different when uncertain factors are considered. 

As a result, the performance of a structure, such as robustness and 

reliability, is unavoidably subject to variations in practice due to 
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various uncertainties [11,12] . Hence, it is necessary to incorporate 

uncertainties into structural topology optimization problems quan- 

titatively, in order to enhance structural safety and avoid failure in 

extreme working conditions. 

The reliability-based design optimization (RBDO) [11,13–15] and 

robust design optimization (RDO) [16–19] are two main meth- 

ods, which have been used to account for different uncertainties 

in engineering optimization. RBDO focuses on a risk-based solu- 

tion taking into account the feasibility of target at expected prob- 

abilistic levels, in which the risk is commonly measured by the 

probabilities of failure. Thus, RBDO seeks a design that achieves 

a targeted probability of failure (i.e., less than some acceptable 

and invariably small value) and therefore ensures that the con- 

ditions that may lead to catastrophe are unlikely. The RBDO has 

been combined with topology optimization to deliver the so-called 

reliability-based topology optimization (RBTO) methods. For in- 

stance, Kharmanda et al. [20] studied topology optimization of 

continuum structures considering uncertainties by using the first- 

order reliability method. In [21] , a non-deterministic topology op- 

timization methodology is proposed by using a hybrid cellular au- 

tomate method combined with a decoupled RBDO approach. Luo 

et al. [22] proposed a RBTO method based on a multi-ellipsoid con- 

vex model for problems consisting of non-probability uncertainties 

[23,24] , and so on [25] . 

The RDO aims to reduce the sensitivity of the objective function 

with respect to uncertain parameters, so it can minimize both the 

mean and variation of the objective function. The application of 
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RDO to structural topology optimization refers to the robust topol- 

ogy optimization, termed as RTO which is the major focus of this 

research. There have been some studies investigating RTO under 

uncertainties of load conditions, material properties, and geometry 

[26] . For instance, Sigmund [27] presented a topology optimization 

method to include uncertainties during the fabrication of micro 

and nanostructures [28] . Guest et al. [29] studied a perturbation- 

based topology optimization method for solving problems with 

small uncertainty level of externally applied loads. The perturba- 

tion method [30] was also used to solve RTO problems with small 

uncertainty of geometry. Asadpoure et al. [10] combined determin- 

istic topology optimization techniques with a perturbation method 

for quantification of uncertainties associated with structural stiff- 

ness. The main concept of the perturbation method is to transform 

the original topology optimization problem under uncertainty into 

an augmented deterministic problem. However, the perturbation 

method may produce errors which cannot be ignored when the 

uncertainty level of parameters is relatively high. 

For the continuous problems with uncertainty, the stochastic 

spectrum-based method is usually used to discretize the random 

field. Tootkaboni et al. [31] combined the polynomial chaos ex- 

pansion with topology optimization, to design continuum struc- 

tures to achieve robustness in presence of random uncertainties. 

Zhao et al. [32] considered loading uncertainty of random field by 

using the Karhunen–Loeve expansion to characterize the random 

field as a reduced set of random variables. The Karhunen–Loeve 

expansion was also used to develop robust topology optimization 

method [33] with random field uncertainty, in which the univariate 

dimension-reduction method was combined with the Gauss type 

quadrature sampling to calculate statistical moments of the objec- 

tive function. Jansen et al. [34] discretised the random field by us- 

ing the expansion optimal linear estimation method, which par- 

ticularly suits for discretising random fields with a relatively large 

correlation length. Zhao et al. [35] proposed an efficient approach 

by completely separating the Monte Carlo sampling with topology 

optimization to solve the RTO problem of structures under loading 

uncertainty, which obtained the accurate calculation of the objec- 

tive function. 

Most of the aforementioned RTO methods are based on the the- 

ory of random field or random variables, using a combination of 

the first and second order statistical moments (mean and variance) 

of the design response as the objective function of the RTO prob- 

lems. However, in engineering, how to accurately describe prob- 

ability distribution functions is a challenging task, especially for 

variables with limited uncertainty information. In some cases, for 

the uncertain variables the lower and upper bounds can be more 

easily obtained than the evaluation of accurate probability distribu- 

tions [36] . Hence, the uncertain-but-bounded parameters may be 

more suitable for describing uncertainties under some situations. 

When non-probabilistic parameters are used to describe the uncer- 

tain parameters, the performance under the worst condition can be 

used to define the objective function of RTO problems. In [37] , the 

RTO problem was formulated to minimize the maximum compli- 

ance induced by the worst case of an uncertain load set, which was 

characterized by a convex model. By constraining the Euclidean 

norm of the uncertain loads, the robust optimization problem was 

formulated as the minimization of maximum eigenvalue of an ag- 

gregated symmetric matrix, according to the Rayleigh-Ritz theorem 

for symmetric matrices. However, this method can only be used 

to handle the convex model rather than the interval uncertainty. 

Csébfalvi et al. [38] considered the direction of load as uncertain- 

but-bounded parameters to optimize the truss by using a non- 

linear optimization solver the previously developed hybrid meta- 

heuristic ANGEL [39] , but it was not used in the optimization of 

continuous structure. Wang et al. [36] presented a hybrid genetic 

algorithm, which was integrated with a simple local search strat- 

egy as the worst-case-scenario of an anti-optimization, to tackle 

structure topology optimization under interval uncertainty. How- 

ever, the anti-optimization method is usually time-consuming, es- 

pecially for the RTO of continuum structures, which often involves 

a nested double-loop optimization process that is computationally 

expensive. 

There have been some applications about the interval uncer- 

tainty analysis and optimization. Jiang et al. [40] proposed an op- 

timization method for uncertain structures based on convex model 

and a satisfaction degree of interval, in which the interval analy- 

sis method was used to determine the bounds of constraints. This 

method was then applied to [41] , but the neural network was em- 

ployed to calculate the bounds of constraints. Gao et al. [42] stud- 

ied the interval dynamic response of vehicle-bridge interaction sys- 

tems, in which the parameters of the bridge and vehicle were con- 

sidered as interval variables, and a heuristic optimization method 

(LHNPSO) was used to find the bounds of bridge displacement. The 

hybrid uncertainty analysis of probability and interval uncertainty 

was also studied in references [43, 44] . 

Compared to optimization algorithms, the interval arithmetic 

[45] is a more efficient method that can be applied to handle 

the interval uncertainty, but it often produces large overestima- 

tion [46,47] . A series of techniques have been developed to con- 

trol overestimation or wrapping effect induced by interval arith- 

metic, e.g. the Taylor series-based method [4 8,4 9] , Taylor model 

method [50,51] , and Chebyshev interval method [46,47] . Due to 

its non-intrusive characteristic, the Chebyshev interval method can 

be implemented for complex models as a black-box model. The 

Chebyshev interval method has been applied to the optimization 

problem of vehicle dynamics for hardpoints coordinate with in- 

terval uncertainty [52] and truss structures for geometric dimen- 

sions with interval uncertainty [53] , and demonstrated as an effec- 

tive method to compress the overestimation and avoid the nested 

double-loop in the optimization. However, there has been no pub- 

lication in applying interval arithmetic to the RTO problems of con- 

tinuum structures, particularly due to the following numerical is- 

sue. 

Besides the overestimation in the numerical implementa- 

tion, there has been no effective method so far developed for 

commutating the derivatives of interval functions, due to non- 

differentiability of intervals. However, the first-order derivatives of 

the objective function with respect to the design variables are of- 

ten required to enable the application of the gradient-based math- 

ematical programming methods to the RTO problems. Therefore, 

the difficulty for computing the derivatives is another important is- 

sue in applying the interval arithmetic to the RTO problems. In this 

paper, the Chebyshev interval method [46,47] will be introduced 

to the RTO problems of continuum structures with uncertain-but- 

bounded parameters. The interval functions of RTO problems will 

be calculated by the interval arithmetic, in order to improve com- 

putational efficiency by avoiding the nested double-loop optimiza- 

tion and numerical accuracy by compressing the overestimation 

due to interval wrapping effect. In particular, a new numerical 

scheme will be developed to compute the derivatives of interval 

functions, which makes it possible to implement the RTO problems 

by using many traditional but efficient gradient-based optimization 

algorithms. 

2. Material density based approach for topology optimization 

A typical topology optimization problem is the one to find the 

best layout of material within a given design domain, to mini- 

mize a prescribed objective function while satisfying a set of con- 

straints. The well-known topological optimization design problem 

is the minimization of structural mean compliance. With a given 

amount of material, the goal of the optimization is to identify the 
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