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a b s t r a c t 

This paper introduces an efficient method to automatically generate and mesh a periodic three- 

dimensional microstructure for matrix-inclusion composites. Such models are of major importance in the 

field of computational micromechanics for homogenization purposes utilizing unit cell models. The main 

focus of this contribution is on the creation of cubic representative volume elements (RVEs) featuring a 

periodic geometry and a periodic mesh topology suitable for the application of periodic boundary condi- 

tions in the framework of finite element simulations. Our method systematically combines various mesh- 

ing tools in an extremely efficient and robust algorithm. The RVE generation itself follows a straightfor- 

ward random sequential absorption approach resulting in a randomized periodic microstructure. Special 

emphasis is placed on the discretization procedure to maintain a high quality mesh with as few elements 

as possible, thus, manageable for computer simulations applicable to high volume concentrations, high 

number of inclusions and complex inclusion geometries. Examples elucidate the ability of the proposed 

approach to efficiently generate large RVEs with a high number of anisotropic inclusions incorporating 

extreme aspect ratios but still maintaining a high quality mesh and a low number of elements. 

© 2016 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 

1. Introduction 

A crucial aspect in the development and optimization of high 

performance materials is the utilization of heterogeneous materi- 

als such as particle or fiber reinforced composites. For simulating 

and predicting the mechanical deformation behavior most accu- 

rately, it is essential to incorporate information of the underlying 

microstructure. The research field of computational micromechan- 

ics deals with this topic and the issues of how this should be con- 

ducted. A major interest in this field lies in the prediction of ef- 

fective material properties or in the deduction of constitutive laws 

via multiscale methods [14,18,35] . One sophisticated approach is 

addressed to the investigation of unit cells that act as RVEs 1 of 

the material of interest [17,18] . The guiding idea is the computa- 
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1 Following [2] we associate the terminus unit cell with any volume that is ca- 

pable of forming a periodic microstructure via congruence mappings (translation, 

mirroring, rotation). As a limiting case a unit cell might be a RVE. 

tion of material responses on sample RVEs by solving a boundary 

value problem using numerical methods. The numerical method of 

choice throughout this work is the finite element method repre- 

senting a state-of-the-art technology in computational engineering. 

For employing finite element simulations in this context, a dis- 

cretization of the unit cells is inevitable. This rises the important 

question on what the RVE should look like and what the require- 

ments of a proper finite element mesh are. 

The geometric information of real microstructures gained from 

experimental observations, such as image reconstruction, are only 

partially suitable for numerical simulations due to their abundance 

and complexity [7,13] . For simulation purposes it is often neces- 

sary to artificially generate geometrically simpler RVEs which fea- 

ture relevant properties of the real material. In this regard, the 

microstructures may be interpreted as the result of a stochastic 

process [35] . Generating a RVE can therefore be sourced by an arti- 

ficial stochastic process which in turn leads to artificial microstruc- 

tures. To verify and to ensure the quality and compliance of the 

generated geometry a stochastic equivalence between the real and 

artificial microstructures is desirable [28] . Considering the general 
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computational feasibility, only a few meaningful geometric param- 

eters and their corresponding distributions might be included in 

such a process. A common approach to generate randomized arti- 

ficial RVEs is the utilization of random sequential absorption pro- 

cesses [15,26,33] that successively built up the microstructure. 

One major class of microstructured heterogeneous materials are 

matrix-inclusion composites featuring non-overlapping inclusions 

to which this paper addresses. Many authors dedicated their work 

to these materials considering various types of inclusions such 

as spherical particles [3,4,11,22,23] , ellipsoids [3,5,12,24] or cylin- 

ders [1,8] . A cumbersome task in the generation process is plac- 

ing the inclusions randomly while preserving the non-overlapping 

requirement. For this task intersection tests or distance queries 

between two inclusions need to be conducted. Especially the gen- 

eration of unit cells with high volume fractions is difficult to man- 

age [see e.g. 3 , 24 , 8] . More sophisticated approaches like molecu- 

lar dynamic methods [12] , geometric adaption of the particles [1] , 

dynamic simulation of densification [34] or simulated annealing 

[26] are necessary to circumvent this problem. 

Besides the geometry generation itself the geometric discretiza- 

tion is an important step for subsequent simulations. Especially 

for finite element simulations this becomes a non-trivial task. In 

context of the underlying boundary value problem, with respect 

to homogenization purposes, the application of periodic bound- 

ary conditions is favorable [18,21] . A drawback of this method 

is the inevitable requirement of a periodic mesh topology. Al- 

though there exist some software packages that feature a periodic 

mesh generation, e.g., Netgen [27] or commercial meshing pack- 

ages which allow mesh copying and constrained meshing, there is 

no straightforward way of generating such meshes. Problems may 

arise from the restriction to very simple inclusion geometries, such 

as spheres. Unstable boolean operations, which are likely to fail in 

the process of constructing the geometry, might be an inevitable 

obstacle. On the other hand, the mesh size can easily increase, re- 

sulting in finite element models too large for efficient simulations. 

In [3–5] the authors investigated random RVEs with different types 

of inclusions using Netgen . It was revealed that for small num- 

ber of inclusions very large number of elements result from the 

discretization process (e.g., 15 inclusions yield 10 0.0 0 0 elements). 

To circumvent this problem, [24] divided the meshing process into 

several steps. However, they were only able to consider spheroids 

with aspect ratios smaller than three. The recent work of [8] shows 

an approach featuring a large number of inclusions with infinite 

length. A combination of multiple software packages is applied to 

circumvent the drawback of using boolean operations. However, 

neither the generated microstructure nor the mesh feature a pe- 

riodic topology. In this regard, the publication of [32] reveals a 

promising approach. By successively treating each inclusion indi- 

vidually a periodic mesh is obtained. However, their method re- 

quires the utilization of polyhedral finite elements, which requires 

non-standard software. 

Another noticeable class of microstructured heterogeneous 

materials are polycrystals with a pronounced grain topology. 

[10,17,25] investigated their generation, discretization and effective 

mechanical properties by approximating the granular structure via 

Voronoi-diagrams. Again, only non-standard methods [10] result 

in a periodic mesh topology suitable for periodic boundary con- 

ditions. 

These examples highlight the demand for a proper method for 

generating randomized matrix-inclusion RVEs featuring a periodic 

mesh topology. The central contribution of this paper is an algo- 

rithm that automatically generates a periodic tetrahedralization of 

cubic matrix-inclusion RVEs for the use in finite element simula- 

tions. The outline of this paper is as follows: First, we describe the 

microstructure geometry generation process. Thereafter, the indi- 

vidual inclusions are incorporated into a constructive solid geome- 

try model, thus, taking care of potential intersections with the unit 

cell. The difficulties of discretization are solved by meshing the in- 

clusions successively, hence, breaking down the meshing process 

into smaller subtasks. Therefore, the generated surface meshes of 

the constructive solid geometry representations of all inclusions 

are periodically distributed in the RVE, master edges and surfaces 

are created, resulting in a waterproof surface mesh. Afterwards, 

a volume mesh of high quality tetrahedrons is generated to ob- 

tain a discretization of the whole structure. Finally, we elucidate 

the quality of the generated mesh, and compare it to meshes from 

available software packages, e.g., Netgen . 

2. Microstructure generation 

Exemplarily, the considered microstructures possess ellipsodial 

inclusions of revolution, namely spheroids. The examined RVEs ex- 

hibit a cuboid like shape featuring translational periodicity with 

these spheroids inside. Before the actual microstructure generation 

process is explained, we introduce an accurate description of the 

geometric setting, the significant geometric primitives and their 

randomized placement. 

2.1. Mathematical description of geometric setting 

One corner of the cuboid shaped RVE is located at the origin 

of the global coordinate system with edges aligned parallel to the 

coordinate axes as shown in Fig. 1 . The side lengths of the cuboid 

are denoted by a x , a y and a z . The faces of the RVE are interpreted 

as subsets of planes P i . We describe these planes by the Hessian 

normal form 

P i = { x ∈ R 

3 | x T · n p + d = 0 } , (1) 

with n p being the outward pointed normal vector and | d | being the 

distance of the plane from the origin. With this description the six 

faces of the cuboid are addressed by 

P x 0 = { n x 0 = [ −1 , 0 , 0] T ; d = 0 } , 
P x 1 = { n x 1 = [ 1 , 0 , 0] T ; d = −a x } , 
P y 0 = { n y 0 = [ 0 , −1 , 0] T ; d = 0 } , (2) 

P y 1 = { n y 1 = [ 0 , 1 , 0] T ; d = −a y } , 
P z 0 = { n z 0 = [ 0 , 0 , −1] T ; d = 0 } , 
P z 1 = { n z 1 = [ 0 , 0 , 1] T ; d = −a z } . 
The edges of the cuboid are defined by subsets of lines L i 

L i = { a + r n L | r ∈ R } , (3) 

where a is a point on the line and n L the direction vector. Addi- 

tionally, all 12 edges of the cube are interpreted as subsets of the 

intersection of two planes and expressed as 

L y 0 z 0 = { P y 0 ∧ P z 0 } , L y 0 z 1 = { P y 0 ∧ P z 1 } , 
L y 1 z 1 = { P y 1 ∧ P z 1 } , L y 1 z 0 = { P y 1 ∧ P z 0 } 

}
with n L = 

[ 

0 

1 

0 

] 

, 

L x 0 z 0 = { P x 0 ∧ P z 0 } , L x 0 z 1 = { P x 0 ∧ P z 1 } , 
L x 1 z 1 = { P x 1 ∧ P z 1 } , L x 1 z 0 = { P x 1 ∧ P z 0 } 

}
with n L = 

[ 

0 

1 

0 

] 

, 

L x 0 y 0 = { P x 0 ∧ P y 0 } , L x 0 y 1 = { P x 0 ∧ P y 1 } , 
L x 1 y 1 = { P x 1 ∧ P y 1 } , L x 1 y 0 = { P x 1 ∧ P y 0 } 

}
with n L = 

[ 

0 

0 

1 

] 

. 

(4) 

The eight corners C i of the cuboid are described as the intersection 

of three planes by 

C x 0 y 0 z 0 = { P x 0 ∧ P y 0 ∧ P z 0 } , C x 0 y 1 z 0 = { P x 0 ∧ P y 1 ∧ P z 0 } , 
C x 1 y 1 z 0 = { P x 1 ∧ P y 1 ∧ P z 0 } , C x 1 y 0 z 0 = { P x 1 ∧ P y 0 ∧ P z 0 } , 

(5) 
C x 0 y 0 z 1 = { P x 0 ∧ P y 0 ∧ P z 1 } , C x 0 y 1 z 1 = { P x 0 ∧ P y 1 ∧ P z 1 } , 
C x 1 y 1 z 1 = { P x 1 ∧ P y 1 ∧ P z 1 } , C x 1 y 0 z 1 = { P x 1 ∧ P y 0 ∧ P z 1 } . 
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