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a b s t r a c t 

The paper proposes an efficient method of drift correction in explicit stress integration schemes. The new 

method does not require significant changes to existing implementations and may, in fact, be regarded as 

a streamlining modification to standard drift correction schemes which may be used in tandem. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

In nonlinear finite element analysis, stresses are integrated from 

previously obtained strain increments. This process is commonly 

known as stress integration or the stress point method. Analyti- 

cal stress integration is generally not possible for advanced elasto- 

plastic constitutive models for soils and, therefore, approximate 

numerical stress integration is usually required. Stress integration 

schemes can be broadly classified into two broad categories: ex- 

plicit and implicit. In implicit schemes, the gradients of the yield 

function and plastic potential are estimated at trial stress states 

and the stress-strain equation is treated as a set of nonlinear equa- 

tions and solved by iteration. In explicit stress schemes, the gra- 

dients are estimated at known stress states and the stress-strain 

relations are treated as a set of differential equations and solved 

incrementally. 

Implicit integration of constitutive relations for metals/soils has 

been discussed, among others, in [1–13] . Explicit integration tech- 

niques, on the other hand, have been described in [14–21] . Com- 

parisons between the performance of implicit and explicit ap- 

proaches are not common, though some data may be found e.g. 

in [22] . 

Explicit stress integration schemes usually do not integrate the 

stresses in one step. Instead, for reasons of accuracy, the strain in- 

crement is divided into subincrements (substeps) which are sub- 
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sequently integrated consecutively [14–15,23] . The subincrementa- 

tion process is generally linked with an error control mechanism 

where the error is estimated using numerical solutions of differ- 

ent orders of accuracy. Such explicit algorithms are referred to as 

substepping algorithms with adaptive error control, and they fre- 

quently use Runge-Kutta methods of different orders of accuracy. 

At the end of the integration process, the computed stress state 

may not satisfy the yield function within a prescribed yield tol- 

erance ( FTOL ) due to approximation errors, a problem which is 

known as yield surface drift. The tolerance FTOL may be defined 

as either a small positive constant or as a dimensionless fraction 

of the normalised size of the yield locus [20,24] . 

A simple method to reduce the drift (i.e. reduce the non-zero 

value of the yield function after integration) is to increase the ac- 

curacy of the explicit stress integration scheme. This option, how- 

ever, may be computationally expensive, especially when excessive 

drift occurs only occasionally. In fact, when drift correction is re- 

quired in most subincrements, it is likely that the value of FTOL is 

too stringent for the error tolerance used to integrate the stresses. 

When drift correction is required only occasionally, the most effi- 

cient way to restore the stresses to the yield surface is via a spe- 

cial drift correction algorithm. In such cases, the correction may be 

applied at the end of each integration step or at the end of each 

integration substep, and is a separate part of the stress integration 

process (see, for example, [25] ). 

Vrh et al. [26] , based on the idea of Halilovi ̌c et al. [ 27 ] pro- 

posed a NICE method to reduce the yield surface drift during the 

integration of classical elastoplastic models. This method has been 

used with some success, e.g. in [28–31] . Furthermore, the method 

of Vrh et al. [26] has been extended by Halilovic et al. [32] to im- 

prove the accuracy of the integration. This paper shows a similar 
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development as it extends the idea of Vrh et al. [26] to include 

higher-order explicit stress integration of elasto-plastic models. 

However, here the NICE method is used to improve the integration 

schemes that are based on Runge-Kutta methods, which have been 

widely used for advanced constitutive models. A key feature of the 

proposed approach is that the drift correction is incorporated in 

the stress integration algorithm in such a way that few additional 

calculations are required. The new algorithm enhances the perfor- 

mance of the Runge-Kutta schemes. In addition, it preserves typi- 

cal features of explicit stress integration with Runge-Kutta methods 

such as automatic error control (not available in [32] ), the possibil- 

ity of using high-order schemes easily (without the need for com- 

puting derivatives, unlike [32] ), and access to the highly optimised 

Runge-Kutta pairs that are widely used in a great many areas. 

2. Description of the NICE drift correction scheme for explicit 

stress integration 

The drift correction algorithm proposed in [25] is well suited 

for complex elasto-plastic constitutive models, such as those that 

are used to model the response of geomaterials. This scheme is 

used often in explicit stress integration with automatic substep- 

ping and error control, where the integration algorithm is based 

on a Runge-Kutta method. In such cases, the stress is integrated 

in series of substeps, with each substep corresponding to a strain 

subincrement. At the end of each substep, the stress state typically 

does not satisfy the yield locus condition F = 0 exactly. Once this 

deviation is deemed to be too large, a drift correction algorithm is 

called and the stress state is restored to the yield surface to within 

a prescribed tolerance. This approach requires additional calcula- 

tions and, in some highly nonlinear cases, the time spent on drift 

correction may be substantial. 

The proposed approach implements the drift correction with- 

out any additional computations. Moreover, it will be shown that 

this new procedure is roughly equivalent to a version of the Potts 

& Gens given in [25] where the drift correction is performed dur- 

ing integration of the subsequent stress (sub)increment. The pro- 

posed algorithm, presented in Section 3 , relies on the NICE ap- 

proach [26] which extends the usual consistency condition 

dF (σ, h ) = 0 (1) 

to one where the initial value of yield function is taken into ac- 

count 

F ( σ0 , h 0 ) + dF (σ, h ) = F ( σ0 , h 0 ) + 

(
∂F (σ, h ) 

∂σ

)T 

dσ

+ 

(
∂F (σ, h ) 

∂h 

)T 

dh = 0 (2) 

Here it is assumed that the yield locus depends on the stresses 

σ and a set of hardening parameters h , with the subscript 0 indi- 

cating values of the stresses and hardening parameters at the be- 

ginning of the (sub)increment. 

This approach leads to some modifications in the standard in- 

tegration procedure as the elasto-plastic matrix is based on the 

new consistency condition ( 2 ). Following conventional practice, the 

stresses are computed as 

d σ = D 

e d ε 

e = D 

e ( d ε − d ε 

p ) (3) 

where D 

e is the elastic stress-strain matrix and the superscripts e 

and p denote elastic and plastic respectively. The plastic strains are 

given by the standard flow rule 

d ε 

p = λ
∂Q 

dσ
(4) 

where λ is a scalar plastic multiplier and Q is the plastic poten- 

tial, while the hardening parameter increment is dependent on the 

plastic strain increment according to 

d h = 

∂h 

∂ ε 

p 
d ε 

p (5) 

Introducing Eqs. (3)–(5) into ( 2 ) results in the following expres- 

sions for the plastic multiplier and elasto-plastic tangent matrix: 

λ = 

F ( σ0 , h 0 ) (
∂F (σ, h ) 

∂σ

)T 
D 

e ∂Q 
dσ −

(
∂F (σ, h ) 

∂h 

)T ∂h 
∂ ε p 

∂Q 
dσ

+ 

(
∂F (σ, h ) 

∂σ

)T 
D 

e dε (
∂F (σ, h ) 

∂σ

)T 
D 

e ∂Q 
dσ −

(
∂F (σ, h ) 

∂h 

)T ∂h 
∂ ε p 

∂Q 
dσ

(6) 

dσ = D 

e d ε 

e = D 

e 

(
ε − λ

∂Q 

dσ

)
= D 

ep dε − D 

e dλ
∂Q 

dσ

= D 

ep dε − D 

e F ( σ0 , h 0 ) 
∂Q 
dσ(

∂F (σ, h ) 
∂σ

)T 
D 

e ∂Q 
dσ −

(
∂F (σ, h ) 

∂h 

)T ∂h 
∂ ε p 

∂Q 
dσ

(7) 

Therefore, the final stresses depend on the same elasto-plastic 

matrix as before, but with an additional correction that depends 

on the amount of drift. This correction 

d σNICE = −D 

e d λ
∂Q 

d σ
= − D 

e F ( σ0 , h 0 ) 
∂Q 
dσ(

∂F (σ, h ) 
∂σ

)T 
D 

e ∂Q 
dσ −

(
∂F (σ, h ) 

∂h 

)T ∂h 
∂ ε p 

∂Q 
dσ

(8) 

may be applied at the end of each step, thus reducing the drift oc- 

curring during the integration. When an elasto-plastic constitutive 

model with hardening is considered, the adjustment in the scalar 

plastic multiplier leads also to a correction in the hardening pa- 

rameter 

d h NICE = 

∂h 

∂ ε 

p 
d ε = 

∂h 

∂ ε 

p 

∂Q 

dσ
δλ

= 

∂h 
∂ ε p 

∂Q 
dσ F ( σ0 , h 0 ) (

∂F (σ, h ) 
∂σ

)T 
D 

e ∂Q 
dσ −

(
∂F (σ, h ) 

∂h 

)T ∂h 
∂ ε p 

∂Q 
dσ

(9) 

Both of the above corrections arise because of the modified 

consistency condition and can be computed during the calcula- 

tions very cheaply (as all the terms are needed for the standard 

integration anyway). It is interesting to note that this scheme, 

if applied separately and iteratively before the next substep cal- 

culation, like a standard correction procedure, is identical to 

the “consistent” correction procedure described by Potts & Gens 

[25] ; provided all the derivatives are evaluated at the updated 

stresses (i.e. the final stresses for the last accepted integration 

subincrement). 

3. NICE drift correction scheme for Runge-Kutta methods 

In explicit stress integration, the strain increment �ε is divided 

into subincrements δε i , such that the error in the corresponding 

stress increment δσi is below a user specified value. In each of 

the subincrements δε i , the stresses are integrated with a Runge- 

Kutta scheme in several stages. The simplest second order Runge- 

Kutta method has just two stages, with the number of stages NoS 

increasing with increasing order of accuracy. In general, the inte- 

gration process for each strain subincrement can be summarised 

as [20] 

δσ( j) = D 

ep( j) 

( 

ε 0 + c ( j) δε i , σ0 + 

j−1 ∑ 

k =1 

a ( jk ) δσ(k ) , 

h 0 + 

j−1 ∑ 

k =1 

a ( jk ) δh 

(k ) 

) 

δε 
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