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a b s t r a c t

The implementation of NP-SSO (non-parametric stochastic subset optimization) to general design under un-

certainty problems and its enhancement through various soft computing techniques is discussed. NP-SSO

relies on iterative simulation of samples of the design variables from an auxiliary probability density, and

approximates the objective function through kernel density estimation (KDE) using these samples. To deal

with boundary correction in complex domains, a multivariate boundary KDE based on local linear estimation

is adopted in this work. Also, a non-parametric characterization of the search space at each iteration using a

framework based on support vector machine is formulated. To further improve computational efficiency, an

adaptive kernel sampling density formulation is integrated and an adaptive, iterative selection of the number

of samples needed for the KDE implementation is established.

© 2015 Civil-Comp Ltd. and Elsevier Ltd. All rights reserved.

1. Introduction

In any engineering design application, the performance predic-

tions for the system under consideration involve some level of uncer-

tainty, stemming from our incomplete knowledge about the system

itself and its environment (representing future excitations). Explicitly

accounting for these uncertainties is important for providing optimal

configurations that exhibit robust-performance [1-3]. A probabilistic

approach provides a rational and consistent framework for perform-

ing this task [4], employing probability models to characterize dif-

ferent possible model-parameters values. In this setting, the design

objective is typically related to the expected value of a system perfor-

mance measure, such as failure probability or expected life-cycle cost

[2,5-8]. For applications involving complex system models this ex-

pected value can rarely be calculated or accurately approximated an-

alytically [9]. For such applications stochastic simulation techniques,

which pose no constraints on the complexity of the adopted numeri-

cal and probability models, are frequently the only applicable general

approach [10,11] for estimating the objective function. This approach,

though, entailing a large number of evaluations of the system perfor-

mance for each objective function estimation, might impose a com-

putational cost that is prohibitive for applications involving compu-

tationally expensive models.

To address this challenge, this paper investigates an alterna-

tive optimization algorithm for system design optimization under

uncertainty, termed non-parametric stochastic subset optimization
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(NP-SSO). NP-SSO, proposed recently [12] for design problems uti-

lizing the system reliability as the objective function, also relies on

stochastic simulation, but rather than calculating the performance

objective for specific values of the design variables, establishes a

global approximation for it. It is an extension of the SSO algorithm

[13], and like SSO it relies on simulation of a sufficient number of

samples of the design variables from an auxiliary probability den-

sity function, treating them artificially as uncertain. Rather than us-

ing the information in these samples to establish an approximation

for the average value of the objective function over preselected sub-

sets, as established in SSO, NP-SSO utilizes kernel density estimation

(KDE) [14] to approximate the objective function and identify can-

didate points for the global minimum. An iterative approach is also

established within NP-SSO to improve computational efficiency: at

each iteration a new compact domain is identified as candidate sub-

set for the optimal design variables and the search is then confined

within this domain. A parametric description for that subset, corre-

sponding to a box-bounded domain, was adopted in [12] to support

the proposed KDE implementation.

In this paper, based upon [15], NP-SSO is extended to general

design under uncertainty problems (not constrained to reliability-

optimization), and more importantly it is coupled with various soft-

computing techniques to improve its non-parametric characteristics

and its numerical efficiency. Specifically, the following advances are

introduced here for NP-SSO. A versatile, non-parametric characteriza-

tion of the subset identified at each iteration is investigated through

adoption of KDE with multivariate boundary kernels (KDE-MBK) [16].

To achieve this goal, a support vector machine (SVM) [17] is addition-

ally adopted to facilitate (i) efficient simulation of samples and (ii)
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Nomenclature

AKSD adaptive kernel sampling density

x design variable vector

xi ith design variable

nx dimension of x

X admissible design space

x∗ optimal design solution

θ uncertain model parameters

nθ dimension of θ
� space of possible values for θ
p(.) probability density function

h(x, θ) performance measure

C(x) objective function

I bounded search space

Ĉ(x) approximation to objective function

through stochastic simulation

VI volume of set I

C̃(x) approximation to objective function

through NP-SSO

Ep(x)p(θ)[h(x, θ)]I average value for objective function for x be-

longing in I

Êp(x)p(θ)[h(x, θ)]I approximation to Ep(x)p(θ)[h(x, θ)]I through

stochastic simulation

π I(x, θ) auxiliary density function for x and θ with x

belonging in I

{x j
.., θ

j
..} jth sample from x.. or θ..

{xh, θh} sample set for {x, θ} from π I(x, θ)

{xc, θc} sample set for which the system response

is evaluated during the stochastic sampling

process

π I(x) auxiliary density function for x with x be-

longing in I

π I(θ) auxiliary density function for θ with x be-

longing in I

ns number of samples available from π I(x)

{xh} sample set from π I(x)

N number of samples in set {xc, θc}
Km product multivariate kernel

q(�) proposal density for θ for obtaining samples

S(x) support domain for kernel Km for x

wi bandwidth of kernel for xi

Km multivariate kernel with boundary correc-

tion

K(�) univariate kernel for approximation of π I(x)

c0, c1i, dkl coefficients needed for boundary correction

σ i standard deviation of samples {xh} for ith

design variable

I∗ subset of I with C̃(x) ≤ ch

δ(I∗|I) volume ratio between sets I∗ and I

{xu} uniform samples in I

ρ target volume ratio for δ(I∗|I) per iteration

of NP-SSO

nu number of samples in {xu}
{xp, θp} samples available for formulation of pro-

posal densities for stochastic sampling in

the new search space

np number of samples in {xp, θp}
H(I∗|I) ratio of average objective function values in

I∗ and I

Ĥ(I∗|I) approximation to H(I∗|I) using stochastic

simulation

{xo} uniform samples in I∗

ch threshold defining subset I∗

no number of samples in {xo}
{xe,θe} samples for which h(x, θ) is known for guid-

ing the formulation of proposal densities

ne number of samples in {xe,θe}
Dre relative entropy

KG(.) univariate kernel for AKSD

λj local bandwidth factor for jth sample

d vector with kernel characteristics

v subset of θ targeted for the AKSD

nv size of v

ti bandwidth for ith component of v

α sensitivity factor

se percentage reduction for definition of Dmin

Dmin minimum relative entropy considered

cs stopping threshold for H(I∗|I)
..k(subscript k) kth iteration of NP-SSO characteristics

nsa number of samples per stage for adaptive

selection of ns

nb stage count for adaptive selection of ns

KDE kernel density estimation

M number of clusters for {xo}
..m(superscript m) mth cluster of {xo} characteristics

ρδ accuracy threshold for identification of sub-

set I∗

ns ,max maximum allowable number of samples

considered for ns

estimation of boundary correction terms within the proposed it-

erative scheme. Furthermore, an adaptive kernel sampling density

(AKSD) is adopted to improve the efficiency of the stochastic sam-

pling stage that is required within NP-SSO to generate the necessary

samples from the design variables. The characteristics for the AKSD

are chosen here to explicitly optimize the anticipated sampling ef-

ficiency, utilizing readily available information to perform this op-

timization. Finally, an adaptive selection of the number of samples

needed for the KDE approximation is proposed. This is established

through a multi-stage process; a new set of samples is obtained at

each stage and then a new KDE approximation is established and a

new domain identified (within the same always iteration of NP-SSO).

If this domain does not differ significantly from the previous one (ob-

tained utilizing a smaller number of samples), the KDE approxima-

tion has sufficient accuracy and the multi-stage sampling stops. The

advances proposed here, especially the AKSD and the adaptive selec-

tion of the number of samples for the KDE approximation, contribute

greatly to the efficiency of NP-SSO.

In the next section the general design under uncertainty problem

is reviewed and in Section 3 the NP-SSO framework is presented for

such problems. The proposed advances for facilitating complex sub-

set selection are developed in Section 4 whereas in Section 5 an adap-

tive stochastic sampling implementation is seamlessly integrated in

the framework. In Section 6 the adaptive selection of the number

of samples for KDE-MBK is presented and the overall adaptive NP-

SSO algorithm is reviewed. Finally, Section 7 presents an illustrative

example.

2. Design under uncertainty optimization

Consider a system that involves some controllable parameters

that define its design, referred to also as design variables and let

x = [x1x2 . . . xnx ] ∈ X ⊂ �nx be the design vector where X denotes

the bounded admissible design space. Let θ = [θ1θ2 . . . θnθ
] lying

in � ⊂ �nθ be the vector of uncertain model parameters for the

system, where � denotes the set of their possible values. A PDF
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