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a b s t r a c t

Nine different schemes of dynamic relaxation method are compared in the paper. Schemes with viscous

damping and schemes with kinetic damping are used. Kinetic damping with a peak in the middle of the time

step and kinetic damping with the parabolic approximation of the peak are considered. They are also used

in three different ways of cable approximation. The cable is approximated as a tension bar, a catenary and

a parabolic cable element. The efficiency and stability of each method are compared to three selected 3D

examples of cable structures and one existing structure. The effect of mass distribution along the structure is

also of interest and is studied in the paper.

© 2015 Civil-Comp Ltd. and Elsevier Ltd. All rights reserved.

1. Introduction

The dynamic relaxation method (DRM) is an iterative process that

is used to find static equilibrium. DRM is not used for the dynamic

analysis of structures; a dynamic solution is used for a fictitious

damped structure to achieve a static solution. The method relies on a

discretized continuum in which the mass of the structure is assumed

to be concentrated at given points (nodes) of the structure. Resid-

ual forces (the difference between internal and external forces) are

also calculated at these nodes. Nodal displacements are calculated on

the basis of Newton’s second law of motion, in which residual forces

and fictitious variables are used. The diagonal mass matrix and the

diagonal damping matrix attenuation are considered and, therefore,

the nodal displacement equation may be written for each node sep-

arately. And this, in particular, is the main advantage of this method:

DRM does not require the assembly and storage of the global stiffness

matrix of the structure. DRM is quite suitable for solving large-scale

nonlinear problems such as cable structures.

The DRM theory was first described by Day [1]. This theory was

further developed by adding a rule for determining the mass to each

node [2]. Using kinetic damping is another effective method that was

described by Topping [3] and Lewis [4]. Here is also mentioned that

the dynamic relaxation method is more stable and more efficient than

other stiffness matrix approaches for structures with large degrees of

freedom.

The stability of the DRM, the speed of convergence and the CPU

time of the solution can be radically affected by the suitable choice
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of fictitious parameters – i.e. mass and damping. If the masses are

too small (in relation to the stiffness of the structure), then the in-

stability of the iteration may occur and the analysis will not converge

to the equilibrium state. On the contrary too large fictitious masses

lead to the slow and time consuming calculations. The iterative DRM

algorithm converges very fast when using the values of damping co-

efficients close to the critical values. Too large values of damping also

lead to the slow and time consuming calculations. For this reason the

technique of kinetic damping is employed (with the viscous damping

coefficient taken as zero).

The paper compares the effectiveness of different solution strate-

gies for the static analysis of cable structures based on the DRM. The

factors having an impact on the stability of the method and the speed

of the convergence, such as distribution of the fictitious mass along

the structure, using the fictitious damping factor and the choice of

the time step are studied in the paper. Three different ways of cable

approximation are used – the cable is approximated as a tension bar,

a catenary and a parabolic cable element. The efficiency and stabil-

ity of each solution DRM strategy are compared to three selected 3D

examples of cable structures and one existing structure.

This study is a follow-up to study [5]. It has been extended to in-

clude the design of the roofing of the Barrandov tram stop in Prague.

2. Approximation of cable

A cable can be approximated as a tension bar, a catenary (sev-

eral tension bars) and a perfectly flexible element (bending moments

along all of its length are equal to zero). Homogeneous material

with a constant cross-section throughout its length is assumed in all

cases.
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Fig. 1. A bar element.

2.1. Tension bar

The bar connects the endpoints and carries only a positive normal

force. The internal force T in one bar element may be calculated using

the known Eq. (1) (Fig. 1):

T = EA

s0
(r − s0) (1)

where:

• E is Young’s modulus of elasticity,

• A is the cross-sectional area,

• r is the distance between two end joints in the chord direction

(current length),

• s0 is the non-elongated length of the element (slack length).

The force T acts as a normal force on the bar. If the force T

is negative, then it is set to zero. The deadweight of the strut

has been assumed to be concentrated equally at its two end

joints.

2.2. Catenary

The basic assumption of this theory is that the behaviour of a

cable may be approximated by a few bars. These bars are intercon-

nected by joints and sustain only positive normal forces. The be-

haviour of individual bars is described in Section 2.1. As found in

[6], five bars well enough correctly describe the characteristics of

the cable. This approximation enables to describe more precisely

the behaviour of individual members (e.g. vertical deflections of the

cable).

2.3. Cable element

The basic assumption of the analysis of a flexible elastic cable is

that the cable is regarded to be perfectly flexible and is devoid of

any flexural rigidity. The load on the cable, which must include at

least self-weight, is distributed uniformly along the curve of the ca-

ble, which is assumed to be a parabola. The detailed analysis can be

found in [7–9].

For the purpose of the study, it is necessary to use an internal force

T, which is always positive and whose significance is shown in Fig. 2.

The force T can be calculated iteratively from Eq. (2), as given in [7]:
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where:

• l is the horizontal distance between the two end joints,

• c is the vertical separation between the joint j and the joint i (it

can be negative),

• r is the distance between two end joints of the cable element,

• s0 is the slack length of the cable element,

• Q is the resultant of the vertical uniform load q acting vertically

along the entire length of a parabolic curved cable, while Q = qs0.

For reasons of clarity, the calculation introduces two more

substitutions:

a = Q2r2 + 4c2T 2 + 4l2T 2 + 4crQT ;
b = Q2r2 + 4c2T 2 + 4l2T 2 − 4crQT.

3. Dynamic relaxation

The theory of this method was first described by Day [1]. This the-

ory was further developed and its detailed overview may be found in

Barnes [2], Topping [3] or Lewis [4].

3.1. Principle

The basic Eq. (3) of motion for the joint i, the direction j (j corre-

sponds to x, y and z directions) and the time t is:

Rt
i j = Mi j · v̇t

i j + Ci j · vt
i j (3)

where:

• Rt
i j

is the residual force at the nodal point i, in the direction j and

at the time t,

• Mi j is the fictitious mass at the nodal point i and in the direction j,

• Ci j is the fictitious damping factor for the nodal point i and in the

direction j,

• vt
i j

is the velocity at the nodal point i in the direction j and at the

time t,

• v̇t
i j

is the acceleration at the nodal point i in the direction j and at

the time t.

The basic unknowns are nodal velocities, which are calculated

from nodal displacements. The discretisation from the timeline with

the time step �t will be performed. During the step �t, a linear

change of velocity is assumed. Acceleration during the step �t is

Fig. 2. A cable element. Left – symbols of geometry. Right – tensile force T .
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