
Integrating rotation and angular velocity from curvature

A. Treven, M. Saje ⇑
University of Ljubljana, Faculty of Civil and Geodetic Engineering, Jamova 2, SI-1115 Ljubljana, Slovenia

a r t i c l e i n f o

Article history:
Received 10 October 2014
Received in revised form 16 February 2015
Accepted 16 February 2015
Available online 18 March 2015

Keywords:
Curvature
Angular velocity
Rotational quaternion
Integration of rotational quaternion from
curvature
Integration of angular velocity from
curvature
Initial-value problem

a b s t r a c t

The problem of integrating the rotational vector from a given angular velocity vector is met in such
diverse fields as the navigation, robotics, computer graphics, optical tracking and non-linear dynamics
of flexible beams. For example, if the numerical formulation of non-linear dynamics of flexible beams
is based on the interpolation of curvature, one needs to derive the rotation from the assumed curvature
field. The relation between the angular velocity and the rotation is described by the first-order quasi-
linear differential equation. If the rotation is given, the related angular velocity is obtained by the
differentiation. By contrast, if the angular velocity is given, the related rotations are obtained by the
integration. The exact closed-form solution for the rotation is only possible if the angular velocity is
constant in time. In dynamics of non-linear flexible spatial beams, the problem of integrating rotations
from a given angular velocity becomes even more complex because both the angular velocity and the
curvature need simultaneously be integrated and are both functions of space and time. As the angular
velocity and the curvature are assumed to be analytic functions, they must satisfy certain integrability
conditions to assure the unique rotation is obtained from the two differential equations. The objective
of the present paper is to derive approximate, yet closed-form solutions of the following problem: for
a given curvature vector, determine both the rotation and the angular velocity. In order to avoid the sin-
gularity of kinematic relations, the quaternions are used for the parametrization of rotations, and the
integrations are partly performed in the four-dimensional quaternion space. The resulting closed-form
expressions for the rotational and angular velocity quaternions are ready to be used in the finite-element
formulations of the dynamics of flexible spatial beams as interpolating functions. The present novel
solution is assessed by comparisons of the numerical results with analytical solutions for variety of
oscillating curvature functions, as well as with the solutions of the quaternion-based midpoint integrator
and the Runge–Kutta-based Crouch–Grossman geometrical methods CG3 and CG4.
� 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The problem of integrating the rotational vector from a given
time-dependent angular velocity vector is met in such diverse
fields as the navigation, robotics, computer graphics, and dynamics
of rigid bodies. For example, in a strapdown inertial navigation sys-
tem [1–5], the body-fixed gyroscopes measure the instantaneous
angular velocity of a space vehicle, which is on-line numerically
integrated to obtain the instantaneous coordinate transformation
matrix between the body-fixed and the spatial coordinate systems
needed to establish the attitude of the vehicle. Obviously, having
an accurate, stable and computationally efficient integration is
vital in controlling the spatial position of such systems in flight.
The same integration problem must be solved in real-time optical

tracking of a human body motion, which is related to problems in
robotics and computer graphics [6,7].

A further significant example is met in computational structural
mechanics in the study of non-linear dynamics of flexible beams if
the numerical formulation is based on the interpolation of curva-
ture as in, e.g. [8,9]. There one needs to derive the rotation from
the assumed curvature field when given in terms of the arc-length
parameter. This is essentially the same problem as described
above, because the differential equations for both the angular velo-
city and the curvature in terms of the rotation are formally the
same.

The relation between the angular velocity (or curvature) and
the rotation is described by the first-order quasi-linear differential
equation. When the rotation is a given function, the related angular
velocity (or curvature) is obtained by the differentiation. When the
angular velocity (or curvature) is given, the related rotations must
be obtained by the integration. The exact closed-form solution for
the rotation is possible for angular velocities and curvatures,
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respectively, only if some further conditions are satisfied; e.g. if the
angular velocity is constant in time. An alternative solution in
terms of an infinite series is known for any analytic angular velo-
city (or curvature), see, e.g. [1,10]. Such a solution is computation-
ally inefficient. Various numerical time-integration schemes have
been introduced and their performance discussed, see, e.g.
[11,12] or [13,10] for the references related to the structural
mechanics problems. In [14] it is investigated how the choice of
the parametrization of rotations effects accuracy and computation-
al efficiency of various numerical time-integration schemes by
comparing three different rotation parameterizations, i.e. the rota-
tional vector [15,16,8], the Argyris tangential vector [15] and the
rotational quaternion [17], if combined with two alternative mid-
point rules [13,14] or the classical fifth-order Runge–Kutta
method. Andrle and Crassidis [11] employ the Crouch–Grossman
geometric methods and compare their results with the Runge–
Kutta algorithms. Chiou et al. [12] developed a family of general
high-order numerical time integrators that exactly preserve the
constraint of the rotational quaternion.

In dynamics of non-linear flexible spatial beams, the problem of
integrating rotations from a given angular velocity becomes even
more complex because both the angular velocity and the curvature
need simultaneously be integrated and both are functions of inde-
pendent variables x and t. As the angular velocity and the curvature
are assumed to be analytic functions, they must satisfy certain
integrability conditions to assure that the unique rotation is
obtained from the two differential equations. Our objective here
is thus to derive approximate yet closed-form solutions of the fol-
lowing problem: for a given curvature vector dependent on two
variables, x and t, determine both the rotation and the angular
velocity. In order to avoid the singularity of the kinematic relations
[15,18], the quaternions are used for the parametrization of rota-
tions in the present paper, and the integrations are partly per-
formed in the four-dimensional quaternion space. The resulting
closed-form expressions for the rotational and angular velocity
quaternions could be used in refined, finite-element type of
numerical formulations of the dynamics of flexible spatial beams
as the interpolating functions.

2. Quaternions

Quaternions have recently often been discussed in structural
mechanics literature, see, e.g. [19,20,17], so that only equations
essential for the present study are given. A systematic presentation
of quaternions can be found elsewhere [21,22].

The quaternion, ba, is a four-component element, defined as a

formal sum of a scalar and a vector: ba ¼ a0 þ a
*

. For two arbitrary

quaternions, ba ¼ a0 þ a
*

and bb ¼ b0 þ b
*

, and a scalar, k, the follow-
ing operations are defined:

(i) sum: ba þ bb :¼ a0 þ b0ð Þ þ a
*
þ b

*
� �

¼ bb þ ba,

(ii) multiplication by a scalar: kba :¼ ka0 þ k a
*

,

(iii) multiplication by a quaternion: ba � bb :¼ a0b0 � a
*
� b
*

� �
þ

b0 a
*
þa0 b

*

þ a
*
� b

*
� �

.

The quaternion multiplication is associative: ba � ðbb � bcÞ ¼
ðba � bbÞ � bc , yet it is not commutative, because ba � bb � bb � ba ¼
2 a

*
� b

*

. Quaternions are elements of the 4D vector space.

The null quaternion is defined as b0 ¼ 0þ 0
*

. The identity quater-

nion is b1 ¼ 1þ 0
*

. Hence ba þ b0 ¼ b0 þ ba ¼ ba, b0 � ba ¼ ba � b0 ¼ b0 and

b1 � ba ¼ ba � b1 ¼ ba. The conjugated quaternion is defined asba� ¼ a0 � a
*

. This implies that ðba � bbÞ� ¼ bb� � ba�. The norm of a

quaternion is defined as ba�� �� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiba � ba�p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

0 þ a
*
��� ���2

r
. The quater-

nion whose norm is 1 is the unit quaternion. In what follows, the
unit quaternion will play a remarkable role and will be denoted
by bq. The inverse of a quaternion, ba�1, satisfies the conditionba�1 � ba ¼ ba � ba�1 ¼ b1; hence [22]

ba�1 ¼
ba�
kbak2 : ð1Þ

If kbak ¼ 1,

ba�1 ¼ ba� and ba � ba� ¼ ba� � ba ¼ b1: ð2Þ

The scalar part of a pure quaternion is zero: bapure ¼ 0þ a
*

. This
implies ba�pure ¼ �ba.

A quaternion can also be written in an alternative polar formba ¼ kbakðcos hþ a
*

n sin hÞ, where a
*

n ¼ a
*

k a
*
k

is the unit vector, n
*

; angle

h is extracted from the quaternion using cos h ¼ a0

kbak and sin h ¼ k a
*
k

kbak .
When the quaternion is unitary, its norm is 1; thus

if kbqk ¼ 1; then bq ¼ cos hþ n
*

sin h: ð3Þ

Now we show that the unit quaternion bq ¼ q0 þ q
*

represents the
rotation of a quaternion in 4D. Because the quaternion product is
not commutative, the left and the right multiplications of a quater-
nion, ba, with the unit quaternion, bq, yield two different quaternionsbaL ¼ bq � ba; baR ¼ ba � bq; ð4Þ

but their norms remain equal to kbak:
kbaLk2¼ baL � ba�L¼ðbq � baÞ � ðbq � baÞ� ¼ bq � ba � ba� � bq� ¼ kbak2 bq � bq� ¼ kbak2

;

kbaRk2¼ baR � ba�R ¼ðba � bqÞ� ðba � bqÞ� ¼ ba � bq � bq� � ba� ¼ kbak2
:

This shows that both the left and the right multiplication with the
unit quaternion represent the rotation of a quaternion in 4D. The
resulting quaternions are not pure quaternions, however.

Similarly, the 3D rotation of a vector must result in a 3D vector

whose length is preserved. Consequently, if a vector a
*

is represent-

ed by a pure quaternion, ba ¼ 0þ a
*

, it should remain such in the
rotated position. Hence, the 4D rotation of a pure quaternion
should result in a pure quaternion. By performing explicit multipli-
cations it can be shown that the following composition of two sub-
sequent multiplications with the unit quaternion bqbarot ¼ bq � ba � bq� ð5Þ

yields the pure quaternion barot ¼ 0þ a
*

rot. As, furthermore, the norm
of ba does not change in the 4D rotation (5)

kbarotk2 ¼ barot � ba�rot ¼ bq � ba � bq� � ðbq � ba � bq�Þ�
¼ bq � ba � bq� � bq � ba� � bq� ¼ kbak2

;

bq � ba � bq� represents the rotation of vector a
*

in 3D indeed.
Because bq and bq� each rotates by the same angle [22], their

composition (5) results in the double angle rotation. Thus the dou-
ble left–right operation (5) with the unit quaternion

bqð#; n
*
Þ ¼ cos

#

2
þ n

*
sin

#

2
ð6Þ

on an arbitrary pure quaternion ba ¼ 0þ a
*

results in a pure quater-

nion barot ¼ bq � ba � bq� ¼ 0þ a
*

rot, being rotated from ba by angle #

about axis n
*

.
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