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a b s t r a c t

This article discusses the applicability of the three-parameter Kozeny–Carman generalized equation to
trigger immiscible viscous fingers and describe it in fractal heterogeneous porous media, during numeri-
cal simulations of waterflood operations in oil reservoirs. For that purpose, for the first time this equation
was incorporated into a model that describes immiscible flows of incompressible two-phase fluids in por-
ous media. Results were generated from intensive simulations, and viscous fingers were visualized
graphically for three different well patterns, typical of oil fields: Line-Drive, Five-Spot and Inverted
Five-Spot. Such results suggest that this generalization of the Kozeny–Carman equation can be used in
numerical simulations of oil recovery processes susceptible to hydrodynamic instability phenomena.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

During a secondary petroleum recovery process, conducted
under water injection, the formation of immiscible viscous finger-
ing in the oil reservoir is the product of an interfacial instability
phenomenon that occurs in porous media, when the oil (the
high-viscosity fluid) is displaced by the water (the low-viscosity
fluid). In the presence of this instability phenomenon, part of the
invading water advances through the porous medium at velocities
much higher than those of the average front, bypassing the oil and
rapidly approaching the production wells [3]. Thus, the appearance
of such immiscible viscous fingers can cause considerable prob-
lems for the oil industry, due to poor recovery of hydrocarbons
during a waterflood process.

Hence, appropriate phenomenological models, stability analyses
of immiscible flows and numerical simulators able to capture the
formation of immiscible viscous fingers are very useful tools, not
only to predict the viscous fingering but also to assist in the pro-
posal of a possible stabilization process of this phenomenon of

hydrodynamic nature, which has (over the past several decades)
attracted the attention of many researchers [5,6,8,10,13,17,19,
20,22,23].

Studies that discuss the formation of viscous fingers during
surfactant injection in heavy oil reservoirs, in the presence and
absence of polymers, can be found in the recent works by Yadali
Jamaloei et al. [28–32].

In an oil reservoir, when a less viscous fluid displaces a more
viscous one, immiscible viscous fingers are triggered primarily by
natural geologic heterogeneities, such as the heterogeneities of
the real permeability field. In numerical simulation, there are
two basic approaches to trigger viscous fingers: (a) small per-
turbations of the front at time t ¼ 0, commonly used in the
simulation of flows in homogeneous media, and (b) the effective
use of a mathematical model to describe (even in an approximate
way) the heterogeneity of the porous material [10]. In the second
case, the communities working with reservoir simulations often
use synthetic permeability fields, generated randomly from a log-
normal distribution with a specified variance [12,18].

Recently, Henderson and co-authors proposed the so-called
three-parameter Kozeny–Carman generalized (TPKCG) equation
[15], which was used in the modeling of heterogeneous permeabil-
ity fields. More specifically, the TPKCG equation was developed to
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allow the use of a Kozeny–Carman type model to a broad class
of porous media with fractal nature, generalizing various models
previously reported in the literature, which commonly are employed
to describe specific porous media, including oil reservoirs with
fractal heterogeneities.

The objective of this work is to verify the ability of the TPKCG
equation to trigger immiscible viscous fingers and describe it in a
fractal porous medium during numerical simulations of waterflood
operations, with adverse mobility ratios. For this, we consider a
two-dimensional rectangular porous medium having a random
porosity field, with porosity values uniformly distributed in a given
interval. Then, the absolute permeability of the porous material is
modeled as a function of the porosity, using the TPKCG equation.
This approach yields a heterogeneous permeability field, whose
fractal nature is described by this mathematical model equipped
with three fixed parameters. Assuming this rectangular heteroge-
neous porous medium as the oil reservoir, in order to observe
the effects of well locations on the geometric structure of the
viscous fingering, we present results of flows of two immiscible
incompressible fluids (water and oil) using three flooding patterns
[11], Line-Drive, Five-Spot and Inverted Five-Spot.

Fingering phenomena also can be observed in miscible flows in
porous media [9,14,16,25–27]. However, as noted by King et al.
[20] the instability of an immiscible flow it is more difficult to
model numerically than a miscible flood. In fact, as emphasized
by these authors, in an immiscible fingering the so-called
Buckley–Leverett mixing zone leads to enhanced stability com-
pared to the corresponding miscible flood. Accordingly, the choice
of the present immiscible process incorporates an additional chal-
lenge to the use of the TPKCG equation.

The remainder of this paper is organized as follows. In Section 2,
we describe the characterization of the porous medium via the
TPKCG equation. Section 3 is devoted to the presentation of the
mathematical model for immiscible incompressible fluid flows in
porous media. In Section 4, we summarize the numerical methods.
In Section 5, we report the results. The conclusions are given in
Section 6.

2. Design of the porous material

The characterization of porous materials using a Kozeny–Carman
type equation necessarily considers the existence of a functional
relationship of the form [3]

k ¼ f /ð Þ; ð1Þ

where /, the porosity of the material, is the fraction of the bulk
volume of the porous medium occupied by voids, and k, the
permeability of the material, is the property that determines the
ease with which a fluid may be made to flow through the porous
medium. In Eq. (1), f summarizes the model used, which generally
is a nonlinear function of /, such that f /ð Þ ¼ 0 if / ¼ 0.

The TPKCG equation models fractal structures, which are
characterized by the existence of fundamental properties between
the specific surface ðMbÞ and the portion of the bulk volume
occupied by solid matrix 1� /ð Þ, and between the tortuosity ðsÞ
and the porosity /ð Þ, where Mb is defined as the interstitial surface
area of the pores per unit of bulk volume of a representative
sample of the material, and s is the ratio of flow-path length to
sample-path length. Its formulation assumes that [15]:

(1) The reciprocal of the specific surface admits the fractal scale
law

1
Mb
¼ C1=Mb

1� /ð Þ�D1=Mb ; ð2Þ

where C1=Mb
and D1=Mb

are, respectively, the fractal coefficient
and the fractal exponent of 1=Mb.

(2) The tortuosity is described by the fractal scale law

s ¼ Cs/
�Ds ; ð3Þ

where Cs and Ds are the fractal coefficient and fractal
exponent of s, respectively.

(3) The porous medium can be modeled as a bundle of n
capillary tubes non-necessarily of circular cross-sections,
where the flow in this bundle of hydraulic tubes is described
by an extension of Hagen–Poiseuille law [3]

q ¼ nfv
R4

h

l
DP
Lh
: ð4Þ

In Eq. (4) q is the fluid flow rate in volume per unit time, l is
the viscosity of the fluid, DP is the applied pressure difference
across the length of the tubes, Rh and Lh denote the hydraulic
radius and length of the mean hydraulic tube, and f v is a
shape factor of volume of the tubes.

(4) The hydraulic radius obeys the relation

Rh ¼
/

Mb
: ð5Þ

As stated by Henderson et al. [15], such conditions lead to the
TPKCG equation, which can be written in the following short form
below

k ¼ n2 / fþ3ð Þ

1� /ð Þ2g

" #
: ð6Þ

In Eq. (6), the three fractal parameters n; f and g depend on the
fractal coefficients and fractal exponents described in Eqs. (2) and
(3), and on the ratio

ffiffiffiffiffiffiffiffiffiffiffi
f s=f v

p
, where f s is a shape factor of area of

the tubes. The parameters f and g are dimensionless quantities,
while the parameter n has length dimension.

By fitting the model in Eq. (6) to experimental data available in
the literature, Henderson et al. [15] were able to prove the poten-
tial of the TPKCG equation to describe the permeability–porosity
relationships of many natural and industrial materials, including
sandstones.

In order to study the formation of viscous fingering, here we
consider a two-dimensional heterogeneous porous medium of
fractal nature generated from the TPKCG equation, where the three
parameters are given by n2 ¼ 4 darcy (4:053 lm2), f ¼ 1:5 and
g ¼ 0:002, and the porosity is determined randomly from an
uniform distribution on the interval ½0:2; 0:4�. As shown in Fig. 1,
this choice results in a heterogeneous porous medium where the
permeability varies roughly between 0.0028 and 0.0648 darcy
(0.002837 and 0.065659 lm2).

3. Two-phase flow equations

In this section, we present the mathematical model used to
describe the immiscible flow of an invading fluid (water) plus a
resident fluid (oil), which flow together as incompressible two-
phase fluids in a porous medium, where the water is considered
the wetting phase, while the oil is the nonwetting phase. This flow
is described by the mass conservation equations for the wetting
phase and for the two-phase fluid, and by Darcy’s law for the phase
velocities.

In what follows, S denotes the saturation of the wetting phase
(the portion of pore volume filled with water), and P is the pressure
of the nonwetting phase (oil). The constants lw and ln are the
viscosities of the phases, where ‘‘w’’ and ‘‘n’’ indicate the wetting
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