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a b s t r a c t

In this paper, a new formulation for the optimal tracking control problem (OTCP) of continuous-time
nonlinear systems is presented. This formulation extends the integral reinforcement learning (IRL)
technique, a method for solving optimal regulation problems, to learn the solution to the OTCP. Unlike
existing solutions to the OTCP, the proposedmethod does not need to have or to identify knowledge of the
system drift dynamics, and it also takes into account the input constraints a priori. An augmented system
composed of the error system dynamics and the command generator dynamics is used to introduce
a new nonquadratic discounted performance function for the OTCP. This encodes the input constrains
into the optimization problem. A tracking Hamilton–Jacobi–Bellman (HJB) equation associated with this
nonquadratic performance function is derived which gives the optimal control solution. An online IRL
algorithm is presented to learn the solution to the trackingHJB equationwithout knowing the systemdrift
dynamics. Convergence to a near-optimal control solution and stability of the whole system are shown
under a persistence of excitation condition. Simulation examples are provided to show the effectiveness
of the proposed method.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Reinforcement learning (RL) (Bertsekas & Tsitsiklis, 1996; Pow-
ell, 2007; Sutton & Barto, 1998), inspired by learning mechanisms
observed in mammals, is concerned with how an agent or actor
ought to take actions so as to optimize a cost of its long-term in-
teractions with the environment. The agent or actor learns an op-
timal policy by modifying its actions based on stimuli received
in response to its interaction with its environment. Similar to RL,
optimal control involves finding an optimal policy based on op-
timizing a long-term performance criterion. Strong connections
between RL and optimal control have prompted a major effort to-
wards introducing and developing online and model-free RL algo-
rithms to learn the solution to optimal control problems (Lewis &
Liu, 2012; Vrabie, Vamvoudakis, & Lewis, 2013; Zhang, Liu, Luo, &
Wang, 2012).
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During the last few years, RL methods have been successfully
used to solve the optimal regulation problems by learning the
solution to the so-called Hamilton–Jacobi–Bellman (HJB) equation
(Lewis, Vrabie, & Syrmos, 2012; Liu & Wei, 2013). For continuous-
time systems, Vrabie and Lewis (2009) and Vrabie, Pastravanu,
Abou-Khalaf, and Lewis (2009) proposed a promising RL algorithm,
called integral reinforcement learning (IRL), to learn the solution
to the HJB equation using only partial knowledge about the
system dynamics. They used an iterative online policy iteration
(PI) (Howard, 1960) procedure to implement their IRL algorithm.
Later, inspired by Vrabie and Lewis (2009) and Vrabie et al. (2009),
some online PI algorithms were presented to solve the optimal
regulation problem for completely unknown linear systems (Jiang
& Jiang, 2012; Lee, Park, & Choi, 2012). Also, in Liu, Yang, and
Li (2013) the authors presented an IRL algorithm to find the
solution to the HJB equation related to a discounted cost function.
Other than the IRL-based PI algorithms, efficient synchronous PI
algorithms with guaranteed closed-loop stability were proposed
in Bhasin et al. (2012), Modares, Naghibi-Sistani, and Lewis (2013),
Vamvoudakis and Lewis (2010), to learn the solution to the HJB
equation. Synchronous IRL algorithms were also presented for
solving the HJB equation in Modares, Naghibi-Sistani, and Lewis
(2014) and Vamvoudakis, Vrabie, and Lewis (in press).
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Although RL algorithms have been widely used to solve the
optimal regulation problems, few results considered solving the
optimal tracking control problem (OTCP) for both discrete-time
(Dierks & Jagannathan, 2009; Kiumarsi, Lewis, Modares, Karim-
pour, & Naghibi-Sistani, 2014;Wang, Liu, &Wei, 2012; Zhang,Wei,
& Luo, 2008) and continuous-time systems (Dierks & Jagannathan,
2010; Zhang, Cui, Zhang, & Luo, 2011). Moreover, existing meth-
ods for continuous-time systems require the exact knowledge of
the system dynamics a priori while finding the feedforward part of
the control input using the dynamic inversion concept. In order to
attain the required knowledge of the system dynamics, in Zhang
et al. (2011), a plant model was first identified and then an RL-
based optimal tracking controller was synthesized using the iden-
tified model. To our knowledge, there has been no attempt to de-
velop RL-based techniques to solve the OTCP for continuous-time
systemswith unknown or partially-unknown dynamics using only
measured data in real time. While the importance of the IRL algo-
rithm is well understood for solving optimal regulation problems
using only partial knowledge of the system dynamics, the require-
ment of the exact knowledge of the system dynamics for finding
the steady-state part of the control input in the existing OTCP for-
mulation does not allow extending the IRL algorithm for solving
the OTCP.

Another important issue which is ignored in the existing RL-
based solutions to the OTCP is the amplitude limitation on the
control inputs. In fact, in the existing formulation for the OTCP, it is
not possible to encode the input constraints into the optimization
problem a priori, as only the cost of the feedback part of the control
input is considered in the performance function. Therefore, the
existing RL-based solutions to the OTCP offer no guarantee on
the remaining control inputs on their permitted bounds during
and after learning. This may result in performance degradation or
even system instability. In the context of the constrained optimal
regulation problem, however, an offline PI algorithm (Abou-Khalaf
& Lewis, 2005) and online PI algorithms (Modares et al., 2013,
2014) were presented to find the solution to the constrained HJB
equation.

In this paper, we develop an online adaptive controller based
on the IRL technique to learn the OTCP solution for nonlinear
continuous-time systems without knowing the system drift dy-
namics or the command generator dynamics. The contributions of
this paper are as follows. First, a new formulation for the OTCP
is presented. In fact, an augmented system is constructed from
the tracking error dynamics and the command generator dynam-
ics to introduce a new discounted performance function for the
OTCP. Second, the input constraints are encoded into the optimiza-
tion problem a priori by employing a suitable nonquadratic per-
formance function. Third, a tracking HJB equation related to this
nonquadratic performance function is derived which gives both
feedforward and feedback parts of the control input simultane-
ously. Fourth, the IRL algorithm is extended for solving the OTCP.
An IRL algorithm, implemented on an actor–critic structure, is used
to find the solution to the tracking HJB equation online using only
partial knowledge about the system dynamics. In contrast to the
existing work, a preceding identification procedure is not needed
and the optimal policy is learned using only measured data from
the system. Convergence of the proposed learning algorithm to a
near-optimal control solution and the boundness of the tracking
error and the actor and critic NNs weights during learning are also
shown.

2. Optimal tracking control problem (OTCP)

In this section, a review of the OTCP for continuous-time
nonlinear systems is given. It is pointed out that the standard
solution to the given problem requires complete knowledge of the

system dynamics. It is also pointed out that the input constraints
caused by the actuator saturation cannot be encoded into the
standard performance function a priori. A new formulation of the
OTCP problem is given in the next section to overcome these
shortcomings.

2.1. Problem formulation

Consider the affine CT dynamical system described by

ẋ(t) = f (x(t)) + g(x(t)) u(t) (1)

where x ∈ Rn is the measurable system state vector, f (x) ∈ Rn

is the drift dynamics of the system, g(x) ∈ Rn×m is the input
dynamics of the system, and u(t) ∈ Rm is the control input. The
elements of u(t) are defined by ui(t), i = 1, . . . ,m.

Assumption 1. It is assumed that f (0) = 0 and f (x) and g(x) are
Lipschitz, and that the system (1) is controllable in the sense that
there exists a continuous control on a set Ω ⊆ Rn which stabilizes
the system.

Assumption 2 (Bhasin et al., 2012; Vamvoudakis& Lewis, 2010).The
following assumptions are considered on the system dynamics:

(a) ∥f (x)∥ ≤ bf ∥x∥ for some constant bf .
(b) g(x) is bounded by a constant bg , i.e. ∥g(x)∥ ≤ bg .

Note that Assumption 2(a) requires f (x) be Lipschitz and f (0) =

0 (see Assumption 1) which is a standard assumption tomake sure
the solution x(t) of the system (1) is unique for any finite initial
condition. On the other hand, although Assumption 2(b) restricts
the considered class of nonlinear systems, many physical systems,
such as robotic systems (Slotine & Li, 1991) and aircraft systems
(Sastry, 1991) fulfill such a property.

The goal of the optimal tracking problem is to find the optimal
control policy u∗(t) so as to make the system (1) track a desired
(reference) trajectory xd(t) ∈ Rn in an optimal manner by min-
imizing a predefined performance function. Moreover, the input
must be constrained to remain within predefined limits |ui(t)| ≤

λ, i = 1, . . . ,m.
Define the tracking error as

ed(t) , x(t) − xd(t). (2)

A general performance function leading to the optimal tracking
controller can be expressed as

V (ed(t), xd(t)) =


∞

t
e−γ (τ−t)

[E(ed(τ )) + U(u(τ ))] dτ (3)

where E(ed) is a positive-definite function, U(u) is a positive-
definite integrand function, and γ is the discount factor.

Note that the performance function (3) contains both the
tracking error cost and the whole control input energy cost. The
following assumption is made in accordance to other work in the
literature.

Assumption 3. The desired reference trajectory xd(t) is bounded
and there exists a Lipschitz continuous command generator
function hd(xd(t)) ∈ Rn such that

ẋd(t) = hd(xd(t)) (4)

and hd(0) = 0.

Note that the reference dynamics needs only to be stable in the
sense of Lyapunov, not necessarily asymptotically stable.
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