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a b s t r a c t

In relation with the mathematics of financial applications, the present study deals with the solution of the
time dependent obstacle problem defined in a three-dimensional domain; this problem arises in the pric-
ing of American options derivatives. In order to solve very quickly large scale algebraic systems derived
from the discretization of the obstacle problem, the parallelization of the numerical algorithm is neces-
sary. So, we present parallel synchronous, and more generally asynchronous, iterative algorithms to solve
this problem. For the considered problem, arguments implying the convergence of parallel synchronous
and asynchronous algorithms are given in a general framework. Finally, computational experiments on
GRID’5000, the French national grid, are presented and analyzed. They allow us to compare both synchro-
nous and asynchronous versions with local and distributed clusters and to show the interest of such
methods in the context of grid computing.

� 2012 Civil-Comp Ltd and Elsevier Ltd. All rights reserved.

1. Introduction

The goal of the present study is to solve the discretized time
dependent obstacle problem related to financial applications, more
specifically the pricing of American options derivatives (see [1]).
Note also that the same obstacle problem is likely to occur in many
other applications such as mechanics and free boundary problems.
Sequential algorithms have been studied for example in [2].

Taking into account the large scale of the systems to solve, we
concentrate here on iterative parallel synchronous and asynchor-
nous algorithms. These methods are used in order to reduce the
computation elapsed time. For such parallel iterative methods the
convergence is ensured when the operators arising in the mathe-
matical problem are discretized by appropriate schemes. More
precisely for the discretization of the evolution part of the mathe-
matical problem, an implicit time marching scheme is carried
out; then, we have to solve a sequence of stationary obstacle prob-
lems, each stationary obstacle problem corresponding to the solu-
tion at each time step. Furthermore well adapted schemes are
used in order to achieve the spatial discretization of the remaining
operators present in the mathematical model, i.e. the spatial part of
the mathematical problem. Then, it can be shown that in the sys-
tems to solve, at each time step, we have to solve large linear alge-
braic systems in which the matrix to invert is an M-matrix [3].

Then, the convergence of parallel asynchronous and synchronous
iterative fixed point methods applied to the solution of the consid-
ered problem can be proven by applying our general results; more
precisely the convergence of the considered algorithm is studied
either by contraction techniques [4–6] or by partial ordering
techniques [7–9], in a theoretical framework well adapted to dis-
tributed computation. Note that, practically, it appears that asyn-
chronous algorithms, compared to the synchronous ones, reduce
idle times due to less synchronizations between the processors.
Moreover, from an algorithmic point of view, two kinds of parallel
asynchronous and synchronous methods are implemented: the
projected Richardson’s method and the projected block relaxation
method.

Implementation of the considered algorithms is carried out on a
distributed memory multiprocessor. Communications are man-
aged with M.P.I. More specifically, computational experiments
are performed on GRID’5000, the French national grid (see [10]).
Asynchronous and synchronous versions of the parallel algorithms
are compared; their efficiency is analyzed. In the present study, we
have mainly considered parallel experiments carried out on distant
and heterogeneous clusters. In such a context, the classical notions
of speed-up and efficiency are not relevant. So we have used the
ratio between the elapsed times obtained with synchronous and
asynchronous algorithms in order to compare their respective
behaviors. Moreover, for the analysis of the considered iterative
algorithms, we have also considered the impact of the communica-
tion on the elapsed times.

Note also that due to the considered parallel algorithms, we
consider a subdomain method with no overlapping between
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the subdomains. According to [11–13] we can also consider, for
the solution of the obstacle problem, the Schwarz alternating
method with overlapping between the subdomains; note that
these works do not take into account asynchronous
communications.

The paper is organized as follows: in Section 2 the model problem
is presented and several equivalent formulations of the same prob-
lem are given. The next section is devoted to the description of the
parallel synchronous and more generally asynchronous iterative
algorithms; in particular the asynchronous projected Richardson’s
method and the projected asynchronous block relaxation method
are presented and arguments which ensure their convergence are
briefly given. Finally, in Section 4, experimental results on grid envi-
ronment are presented and analyzed.

2. The model problem

In order to illustrate the present financial study, we consider
here the case of some American options modeled by the Black–
Scholes equations [1]. The classical Black–Scholes equation is a
boundary value problem describing the evolution of call or put
options in the field of mathematics of financial contracts. Among
the many descriptions of financial option contracts, we concentrate
here on American options which may be exercised at any time
prior to expiry, i.e. when the time s takes any value between 0
and T, where T denotes the expiry date. Classically, an American
option is modeled by the following retrograde time dependent
nonlinear convection–diffusion equation:

@v
@s þ r � r2

2

� �
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where, e.w. means every where, / = /(S) = max (S � K, 0) in the
case of call option or / = max (K � S, 0) in the case of put option;
in the previous equations v denotes the value of the considered
option, i.e. a call or a put option; v = v(s, S) is a function of the cur-
rent value of the underlying asset S and of the time s. Note also
that the considered option also depends on the following
parameters:

– r the interest rate,
– r the volatility of the underlying asset, r being in fact the

instantaneous standard deviation of the price with respect to
the exercise price K, classically called strike and fixed before-
hand; in fact r characterizes the uncertainty of the option’s
behavior.

Note that the previous boundary value problem is not defined
on a bounded domain, but is defined on the unbounded domain
Rn;n P 1. This difficulty is solved by considering the problem de-
fined on a bounded domain X � Rn, and it can be proven that the
solution of the retrograde time dependent convection–diffusion
equation defined on the bounded domain X converges to the solu-
tion of problem (1) when the measure of X tends to infinity (see
[14]).

Another particularity of the problem to solve, is that the value
of the option is not known at the initial time s = 0; only the value
v(T, S) is known. In fact the problem consists in computing v(0, S).

These previous two issues can be resolved, firstly by considering
problem (1) defined in a bounded large domain X and secondly by
a change of variables concerning the time, which consists in replac-
ing the variable s by a variable t = T � s. Thus, problem (1) is re-
placed by a classical time dependent convection–diffusion
problem modeled as follows:

@v
@t � r � r2

2
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where B.C. describes the boundary conditions on the boundary @X
of the domain X. Practically, the Dirichlet condition (where v is
fixed on @X) or the Neumann condition (where the normal deriva-
tive of v is fixed on @X) are classically considered.

Remark 1. In the previous problem (2) note that the convection–
diffusion operator is not self adjoint. Nevertheless, since the
coefficients arising in the operator are constant, then by a classical
change of variables, we can formulate the same problem by the
way of a self adjoint operator. Indeed, consider the following time
dependent convection–diffusion operator:

@v
@t
þ btrv � mDv þ cv ¼ g; e:w: in ½0; T� �X; c P 0;

where b = {b1, b2, b3} and consider also the following general change

of variables v = ebt.ea.u, where a is defined by a ¼ bt S
2m ; then, the pre-

vious time dependent convection–diffusion operator is changed as
follows

@u
@t
� mDuþ kbk2

2

4m
þ c þ b

 !
u ¼ e�bt :e�a:g ¼ f ;

where kbk2 denotes the euclidean norm; then, by using this change
of variables, the time dependent convection–diffusion operator is
changed in a time dependent diffusion operator, which has the ma-
jor property of being a self adjoint operator. We can also choose b
by various ways; for example if b is chosen positive, then we can
take any value for b, for example b = 1; if b is chosen negative we
can transform the operator as follows

@u
@t
� mDu ¼ e�bt :e�a:g ¼ f ;

by taking b ¼ � kbk2
2

4m þ c
� �

. Note also that, in the same way, if we con-

sider the stationary convection–diffusion operator

btrv � mDv þ cv ¼ g; e:w: in ½0; T� �X; c P 0;

then the change of variables v = ea.u, where a is defined by a ¼ bt S
2m ,

leads to the following expression of this operator

�mDuþ kbk2
2

4m
þ c

 !
u ¼ e�a:g ¼ f ;

corresponding to a self adjoint operator.
Now, the application of the previous change of variables to the

studied obstacle problem, leads to the following formulation of the
American option problem
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2r2 r � r2

2
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when we consider the homogeneous Dirichlet boundary condition
and
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