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An analysis of the critical velocity of a load moving uniformly along a beam on a visco-elastic foundation
composed of one or two sub-domains is presented. The case study addressed is related to high-speed
railway lines. A new formulation of the governing equations in the first order state-space form is
proposed for the Timoshenko-Rayleigh beam. Differences in results obtained by Euler-Bernoulli and
Timoshenko-Rayleigh beam theories are analysed. It is concluded that, in the case study considered,
these differences are negligible. Critical velocities are obtained for load travelling on finite and infinite
beams, with and without damping. A new relationship between the viscous damping coefficient and
the modal damping ratio is derived and justified. Predictions about critical velocities established in [1]
are confirmed numerically for cases not considered in [1], i.e. in cases when the load passes on infinite

beams and when damping is considered.
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1. Introduction

The response of rails to moving loads is of interest in the area of
high-speed transportation. If simple geometries of the track and
subsoil are considered, a theoretical concept that is based on the
assumption that the track structure acts as a continuously sup-
ported beam (the rail) resting on a uniform layer of springs can
be introduced. This layer of springs represents the underlying
remainder of the track structure, composed of sleepers, ballast,
subballast and subgrade. The stiffness of such spring layer along
the length of the track is named as the track modulus, also referred
to as the modulus of elasticity of the rail support. A single term
representing the viscous damping of the foundation is usually
added to the governing equations describing transverse vibrations
of the rail induced by the moving load.

For such simplified models, analytical or semi-analytical solu-
tions may be derived and thus several concerns related to railway
lines can be quickly solved. Other advantages of simplified models
are listed as follows: (i) only the main results are available, so they
are simple to analyse; (ii) the results usually preserve parameter
dependence, allowing for direct sensitivity analysis; (iii) numerical
evaluation can be carried out only in places of interest, without fol-
lowing the full time history; (iv) high results precision is ensured
within the simplified frame; (v) fast results evaluation is possible.
However, due to the simplifying assumptions, it must be stressed
that the results obtained reflect only an approximation of the real
structural response to the moving load.
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Since a considerable amount of studies have been published on
this subject, only a few pioneering works are mentioned. Dynamic
stresses in the beam structure were first solved by Krylov [2] and
later by Timoshenko [3]. Transverse vibrations in a simply sup-
ported beam traversed by a constant force moving at a constant
velocity were presented by Inglish [4], Lowan [5] and, later on,
other solutions have been given by KolouSek [6] and Fryba [7]. In
these approaches the deflection field is expressed as an infinite
sum of normal modes. Each mode contribution can be obtained
by methods of integral transformation, [8].

Solutions for infinite beams were first presented by Timoshenko
[9]. The Fourier transform is used for solving the ordinary differen-
tial equation. In [10] the effect of the foundation’s viscous damping
on the response was also discussed. The case of a load variable over
time is presented in [11]. The conventional elastic foundation can
sustain both compression as well as tension when the beam de-
forms. The steady state deformation of an infinite beam on a ten-
sionless elastic foundation under a moving load was first studied
in [12]. An important comparison between finite and infinite beam
characteristics is presented in [13].

When dealing with non-homogeneous supports or foundation
stiffness, it is relevant to mention a review by Vesnitskii and
Metrikine on transition radiation in mechanics [14]. According to
this work, when the load passes at a constant velocity over a
discontinuity in the supporting structure, additional vibrations,
conventionally referred to as transition radiation, are generated.
These vibrations can significantly amplify the beam’s deflection
field. In [15], transition radiations in elastic systems are analysed.
Other analytical studies addressing the foundation stiffness change
are presented in [16]. The ones based on the concept of the
dynamic stiffness matrix are given in [1,17,18].

0965-9978/$ - see front matter © 2012 Civil-Comp Ltd and Elsevier Ltd. All rights reserved.

doi:10.1016/j.advengsoft.2012.02.011


http://dx.doi.org/10.1016/j.advengsoft.2012.02.011
mailto:zdim@fct.unl.pt
http://dx.doi.org/10.1016/j.advengsoft.2012.02.011
http://www.sciencedirect.com/science/journal/09659978
http://www.elsevier.com/locate/advengsoft

Z. Dimitrovovd, A.F.S. Rodrigues/Advances in Engineering Software 50 (2012) 44-56 45

In this paper, the analysis of critical velocity of a load moving
uniformly along a beam on visco-elastic foundation is presented.
The critical velocity, in the context of this paper, is defined as the
load velocity inducing the beam’s highest deflections directed
downward and/or upward. This velocity is obtained by a paramet-
ric analysis during which extreme displacements are determined
for each considered velocity. Analyses are carried out on finite as
well as infinite beams, on beams for which the foundation is com-
posed of one or two homogeneous sub-domains (see description
in Section 2) and with or without damping influence. Free vibra-
tions on finite beams after the load has already left the structure
are also analysed. Results related to beams composed of a single
sub-domain are obtained by adopting Euler-Bernoulli (E-B) and
Timoshenko-Rayleigh (T-R) theories. Due to negligible differences
in results, only E-B beams composed of two sub-domains are
considered further. Conclusions taken on the beams composed of
two sub-domains allow for generalization to several sub-domains.

Several authors presented results obtained on finite simply
supported beams [19,20] or clamped beams [21] as the ones that
correspond to infinite beams. In these works no care is taken to
address the issue of reflected waves. The beam lengths introduced
are 30 m, 62.4 m and 32.5 m, respectively, which cannot be consid-
ered very long. In this paper it is shown that results obtained on a
finite beam on soft elastic foundation cannot be interchanged with
results obtained on a corresponding infinite beam. Even a beam
longer than specified above (200 m) is considered in this paper.
Along with the analysis of critical velocity, the main goal of the
study presented in this paper is to identify differences in results
of finite and infinite beams in terms of: (i) the maximum displace-
ment gradient with respect to the load velocity; (ii) the effect of
transition radiation; (iii) the damping influence.

The consideration of realistic damping behaviour is not a sim-
ple task. Total damping should include the material damping and
the geometrical (radiation) damping, that is, the geometrical dis-
sipation due to wave propagation into the subsoil. It was proven
in [22] that the models represented by a low number of parame-
ters like the one used in this paper cannot correctly represent the
geometrical dissipation. Material damping should encompass
both internal friction in the beam as well as damping of the geo-
material representing the foundation. According to experiments,
material damping of geomaterials is frequency independent
[23], thus it should be modelled as hysteretic damping. Often vis-
cous damping is considered instead, because it leads to a conve-
nient form of the equation of motion [23], but then the energy
loss per cycle is dependent upon the excitation (or response)
frequency. Due to several simplifying assumptions already
adopted, a more realistic damping model would not improve
accuracy significantly, therefore only viscous damping is consid-
ered. The value of the critical viscous damping coefficient related
to infinite beams is very often introduced in an approximate way
[24]. The correct formulation for infinite Euler-Bernoulli (E-B)
beams is given in [7], and a new (not yet published) formula is
derived in this paper for the critical damping of infinite
Timoshenko-Rayleigh (T-B) beam.

Along the developments presented in this paper, new formula-
tions are given for: (i) the first order state-space form of T-R beam;
and (ii) for the relation between the viscous damping constant and
the modal damping ratio assuring the same level of damping in
lightly damped finite beam structures.

The critical velocities determined for the case study considered
are still unattainable by nowadays trains. Nevertheless, results pre-
sented in this paper have practical importance because they show
values of extreme displacements as a function of velocity. Espe-
cially augmented displacements directed upward, that aggravate
track deterioration, should be avoided in railway applications.

The paper is organized in the following way: in Section 2, a gen-
eral description of the problem and the simplifying assumptions
are stated. In Section 3, the case study is defined. In Section 4, finite
and infinite beams composed of one sub-domain are analysed un-
der the assumption of E-B and T-R beam theory. In Section 5, finite
and infinite beams composed of two sub-domain are analysed un-
der the assumption of E-B beam theory. In Section 6, numerical
results are presented. Conclusions are drawn in Section 7.

2. General description of the problem

A uniform motion of a constant single vertical force along a
horizontal beam on a linear visco-elastic foundation is assumed.
The foundation is modelled as distributed springs and dashpots.
The beam is homogeneous with a uniform cross section made of
a linear elastic material and its damping is proportional to the
velocity of vibration. The load’s inertia is neglected.

Finite simply supported and infinite beams will be addressed.
The foundation will be composed of one or two sub-domains with
uniform properties. In Fig. 1, a finite simply supported beam on a
foundation composed of two sub-domains is shown. P stands for
the moving force, vis its constant velocity, x and w are spatial coor-
dinate and vertical deflection. The deflection is assumed positive
when oriented downward and is measured from the equilibrium
position, when the beam is only loaded with its own weight. At
zero time (t = 0) the load is located at the origin of the spatial coor-
dinate x.

The critical velocity of the single load will be addressed, exam-
ined and compared for finite and infinite beams on a homogeneous
foundation (foundation composed of a single sub-domain) and on a
foundation composed of two sub-domains. Conclusions drawn are
possible to extend to situations with more foundation sub-do-
mains. For the sake of simplicity, the term “sub-domain” will be
used not only for the foundation, but also for the corresponding
beam structure. Transverse vibrations induced by the load are
solved by the normal-mode analysis. The natural frequencies are
obtained numerically exploiting the concept of the global dynamic
stiffness matrix. This ensures that the frequencies obtained are
accurate. For infinite beams composed of two sub-domains the
method described in [17] is adopted. Results on homogeneous infi-
nite beams are obtained according to [7,24].

In this context, it is necessary to review previous works. In [1],
the load critical velocity on undamped finite beams composed of
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Fig. 1. Simply supported beam on a foundation composed of two sub-domains.
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