
Generating a Petri net from a CSP specification: A semantics-based method

M. Llorens, J. Oliver ⇑, J. Silva, S. Tamarit
Departamento de Sistemas Informáticos y Computación, Universitat Politècnica de València, Valencia, Spain

a r t i c l e i n f o

Article history:
Received 7 February 2012
Accepted 13 February 2012
Available online 24 March 2012

Keywords:
Concurrent programming
CSP
Petri nets
Semantics
Traces
Specification and Simulation

a b s t r a c t

The specification and simulation of complex concurrent systems is a difficult task due to the intricate
combinations of message passing and synchronizations that can occur between the components of the
system. Two of the most extended formalisms used to specify, verify and simulate such kind of systems
are CSP and the Petri nets. This work introduces a new technique that allows us to automatically trans-
form a CSP specification into an equivalent Petri net. The transformation is formally defined by instru-
menting the operational semantics of CSP. Because the technique uses a semantics-directed
transformation, it produces Petri nets that are closer to the CSP specification and thus easier to under-
stand. This result is interesting because it allows CSP developers not only to graphically animate their
specifications through the use of the equivalent Petri net, but it also allows them to use all the tools
and analysis techniques developed for Petri nets.

� 2012 Civil-Comp Ltd and Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays, few computers are based on a single processor
architecture. Contrarily, modern architectures are based on multi-
processor systems such as the dual-core or the quad-core; and a
challenge of manufacturer companies is to increase the number
of processors integrated in the same motherboard. In order to take
advantage of these new hardware systems, software must be pre-
pared to work with parallel and heterogeneous components that
work concurrently. This is also a necessity of the widely general-
ized distributed systems, and it is the reason why the industry in-
vests millions of dollars in the research and development of
concurrent languages that can produce efficient programs for these
systems, and that can be automatically verified thanks to the
development of modern techniques for the analysis and verifica-
tion of such languages.

In this work we focus on two of the most important concurrent
formalisms: the Communicating Sequential Processes (CSPs)
[10,24] and the Petri nets [18,20]. CSP is an expressive process
algebra with a big collection of software tools for the specification
and verification of complex systems. In fact, CSP is currently one of
the most extended concurrent specification languages and it is
being successfully used in several industrial projects [3,8]. Comple-
mentarily, Petri nets are particularly useful for the simulation and
animation of concurrent specifications. They can be used to graph-
ically animate a specification and observe the synchronization of
components step by step. For these reasons, attempts to combine

both models exist (see, e.g., [1]). In this work we define a fully
automatic transformation that allows us to transform a CSP speci-
fication into an equivalent Petri net (i.e., the sequences of observa-
ble events produced are exactly the same). This result is very
interesting because it allows CSP developers not only to graphically
animate their specifications through the use of the equivalent Petri
nets, but it also allows them to use all the tools and analysis tech-
niques developed for Petri nets. Our transformation is based on an
instrumentation of the CSP’s operational semantics. Roughly
speaking, we define an algorithm that explores all computations
of a CSP specification by using the instrumented semantics. The
execution of the semantics produces as a side-effect the Petri net
associated with each computation, and thus the final Petri net is
produced incrementally.

In summary, the steps performed by the transformation are the
following: firstly, the algorithm takes a CSP specification and exe-
cutes the extended semantics with an empty store. The execution
of the semantics produces a Petri net that represents the per-
formed computation. When the computation is finished, the ex-
tended semantics returns to the algorithm a new store with the
information about the choices that have been executed. Then, the
algorithm determines with this information whether new compu-
tations not explored yet exist. If this is the case, the semantics is
executed again with an updated store. This is repeated until all
possible computations have been explored. This sequence of steps
gradually augments the Petri net produced. When the algorithm
detects that no more computations are possible (i.e., the store is
empty), it outputs the current Petri net as the final result.

This work extends a previous work by the same authors pre-
sented at the 7th International Conference on Engineering Computa-
tional Technology [14]. In this new version we provide additional

0965-9978/$ - see front matter � 2012 Civil-Comp Ltd and Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.advengsoft.2012.02.006

⇑ Corresponding author.
E-mail addresses: mllorens@dsic.upv.es (M. Llorens), fjoliver@dsic.upv.es (J.

Oliver), jsilva@dsic.upv.es (J. Silva), stamarit@dsic.upv.es (S. Tamarit).

Advances in Engineering Software 50 (2012) 110–130

Contents lists available at SciVerse ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier .com/locate /advengsoft

http://dx.doi.org/10.1016/j.advengsoft.2012.02.006
mailto:mllorens@dsic.upv.es
mailto:fjoliver@dsic.upv.es
mailto:jsilva@dsic.upv.es
mailto:stamarit@dsic.upv.es
http://dx.doi.org/10.1016/j.advengsoft.2012.02.006
http://www.sciencedirect.com/science/journal/09659978
http://www.elsevier.com/locate/advengsoft


explanations and examples, and new important original material.
The new material includes:

1. An instrumentation of the standard CSP operational semantics
that produces as a side-effect a Petri net associated to the com-
putations performed with the semantics.

2. New simplification algorithms that significantly reduce the size
of the Petri nets generated while keeping the equivalence
properties.

3. An improved implementation that has been made public (both
the source code and an online version).

4. The correctness results. They prove the termination of the
transformation algorithm; and the equivalence between the
produced Petri net and the original CSP specification.

The rest of the paper has been organized as follows. Section 2
overviews related work and previous approaches to the transfor-
mation of CSP into Petri nets. In Section 3 we briefly recall the syn-
tax and semantics of CSP and Petri nets. Section 4 presents an
algorithm able to generate a Petri net equivalent to a given CSP
specification. To obtain the Petri net, the algorithm uses an instru-
mentation of the standard operational semantics of CSP which is
also introduced in this section. Then, in Section 5 we introduce
some algorithms to further transform the generated Petri nets.
The transformation simplifies the final Petri net producing a re-
duced version that is still equivalent to the original CSP specifica-
tion. The correctness of the technique presented is proved in
Section 6. In Section 7, we describe the CSP2PN tool, our implemen-
tation of the proposed technique. Finally, Section 8 concludes.

2. Related work

Transforming CSP to Petri nets is known to be useful since al-
most their origins, because it not only has a clear practical utility,
but it also has a wide theoretical interest because both concurrent
models are very different, and establishing relations between them
allows us to extend results from one model to the other. In fact, the
problem of transforming a CSP specification into an equivalent Pet-
ri net is complex due to the big differences that exist between both
formalisms. For this reason, some previous approaches aiming to
transform CSP to Petri nets have been criticized because, even
though they are proved equivalent, it is hardly possible to see a
relation between the generated Petri net and the initial CSP speci-
fication (i.e., when a transition of the Petri net is fired, it is not even
clear to what CSP process corresponds this transition). In this re-
spect, the transformation presented here is particularly interesting
because the Petri net is generated directly from the operational
semantics in such a way that each syntactic element of the CSP
specification has a representation in the Petri net. And, moreover,
the sequences of steps performed by the CSP semantics are directly
represented in the Petri net. Hence, it is not difficult to map the
animation of the Petri net to the CSP specification.

We can group all previous approaches aimed at transforming
CSP to Petri nets into two major research lines. The first line is based
on traces describing the behavior of the system. In [16], starting
from a trace-based representation of the behavior of the system,
according to a subset of the Hoare’s theory where no sequential
composition with recursion is allowed, a stochastic Petri net model
is built in a modular and systematic way. The overall model is built
by modeling the system’s components individually, and then putt-
ing them together by means of superposition. The second line of re-
search includes all methodologies that translate CSP specifications
into Petri nets directly from the CSP syntax. One of the first works
translating CSP to Petri nets was [4], where distributed termination
is assumed but nesting of parallel commands is not allowed. In [6], a

CSP-like language is considered and translated into a subclass of Pr/
T nets with individual tokens, where neither nesting of parallel
commands is allowed nor distributed termination is taken into ac-
count. Other papers in this area are [19] that considers a subset of
CCSP (the union of Milner’s CCS [17] and Hoare’s CSP [10]), and
[5] which provides full CSP with a truly concurrent and distributed
operational semantics based on Condition/Event Systems. There are
also some works that translate process algebras into stochastic or
timed Petri nets in order to perform real-time analyses and perfor-
mance evaluation. Notable examples are [25,15] that translate CSP
specifications and [23] that define a compositional stochastic Petri
net semantics for the stochastic process algebra PEPA [9]. Even
though this work is essentially different from ours because it is
based on different formalisms, its implementation [2] is somehow
similar to ours because the translation from PEPA to stochastic Petri
nets is completely automatic. As in our work, all these papers do not
allow recursion of nested parallel processes because the set of
places of the generated Petri net would be infinite. In some way,
our new semantics-based approach opens a third line of research
where the transformation is directed by the semantics.

3. CSP and Petri nets

3.1. The syntax and semantics of CSP

This section recalls CSP’s syntax and operational semantics. For
concretion, and to facilitate the understanding of the following def-
initions and algorithms, we have selected a subset of CSP that is
sufficiently expressive to illustrate the method, and it contains
the most important operators that produce the challenging prob-
lems such as deadlocks, non-determinism and parallel execution.

Fig. 1 summarizes the syntax constructions used in CSP [10]
specifications. A specification is a finite collection of process defini-
tions. The left-hand side of each definition is the name of a process,
which is defined in the right-hand side (abbrev. rhs) by means of an
expression that can be a call to another process or a combination of
the following operators:

Prefixing (a ? P): Event a must happen before process P.
Internal choice (P u Q): The system non-deterministically
chooses to execute one of the two processes P or Q.
External choice (P h Q): It is identical to internal choice but the
choice comes from outside the system (e.g., the user).
Synchronized parallelism ðP k

X # R
QÞ: Both processes are executed

in parallel with a set X of synchronized events. A particular case
of parallel execution is interleaving (represented by jjj) where no
synchronizations exist (i.e., X = ;) and thus both processes can
execute in any order. Whenever a synchronized event a 2 X
happens in one of the processes, it must also happen in the
other at the same time. Whenever the set of synchronized
events is not specified, it is assumed that processes are synchro-
nized in all common events.
Stop (STOP): Synonym of deadlock, i.e., it finishes the current
process.

Example 1. Consider the Moore machine [11] in Fig. 2 to compute
the remainder of a binary number divided by three. The different
values for the possible remainders are 0, 1 and 2. Note that if a dec-
imal value n written in binary is followed by a 0 then its decimal
value becomes 2n and if n is followed by a 1 then its value becomes
2n + 1. If the remainder of n/3 is r, then the remainder of 2n/3 is 2r
mod 3. If r = 0, 1, or 2, then 2r mod 3 is 0, 2, or 1, respectively.
Similarly, the remainder of (2n + 1)/3 is 1, 0, or 2, respectively. So,
this machine has 3 states: q0 is the start state and represents a

M. Llorens et al. / Advances in Engineering Software 50 (2012) 110–130 111



Download	English	Version:

https://daneshyari.com/en/article/6961864

Download	Persian	Version:

https://daneshyari.com/article/6961864

Daneshyari.com

https://daneshyari.com/en/article/6961864
https://daneshyari.com/article/6961864
https://daneshyari.com/

