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a b s t r a c t

This paper presents a scheme for the identification of a system which operates in closed-loop and in the
presence of bounded output disturbances. Two algorithms are proposed to solve this identification prob-
lem. The first algorithm is an Optimal Bounding Ellipsoid (OBE) type algorithm. This first algorithm is
analyzed and sufficient conditions for stability and convergence are established. Relaxation of these con-
ditions leads to a second identification algorithm. The implementation of that second algorithm is realized
in an iterative scheme. A numerical example is provided to show the efficiency of the scheme.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. The considered identification problem

This paper is devoted to the study of a Set Membership Identifi-
cation (SMI) algorithm for a dynamic SISO system operating in the
presence of feedback. Here the system is assumed to be param-
eterized by a discrete-time transfer function G∗(q) such that the
closed-loop behavior of the system satisfies


yt = G∗(q)ut + wt
ut = rt − C(q)yt

, it fol-
lows

yt =
G∗(q)

1 + G∗(q)C(q)
rt + vt (1)

with vt =
1

1+G∗(q)C(q)wt . C(q) is the linear controller (supposed to
be known) and rt an exogenous input signal. The sequencewt is not
observable but is known to be bounded in the ℓ1 norm: |wt | ≤ δw .
Through the closed-loop wt produces the bounded sequence vt
such that

|vt | ≤ δv. (2)

It represents noise measurements, state disturbances or modeling
inaccuracies brought back on the output of the closed loop.
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under the direction of Editor Torsten Söderström.
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This closed-loop SMI problem occurs when open-loop experi-
ment is prohibited or has nomeaning (safety, stability, economical
reasons, efficiency of operation, etc.) and when the diversity of the
components on wt is such that its probability density function is
unknown.

1.2. Prior work

The identification of closed-loop systems has received much
interest for the last decades (see e.g. Agüeroa, Goodwin, & Van den
Hof, 2011 and Forssell & Ljung, 1999) and three specific groups of
methods can be distinguished: (1) the direct approaches in which
the identification is performed as in an usual open-loop context
(Chiuso, 2006, Chiuso & Picci, 2005 and references therein), (2) the
indirect approaches which are mainly based on an analysis of the
control system sensitivity function using the system output and an
external excitation input (see Forssell & Ljung, 1999, Gilson & Van
Den Hof, 2005, Van Den Hof & Schrama, 1993, Van Overschee &
De Moor, 1997) and (3) the joint input–output approaches which
use the system input–output behavior together with an external
excitation input (see Katayama & Tanaka, 2007, Verhaegen, 1993).
These methods aim at providing an unbiased model of the plant
in the stochastic noise assumption. If the only information about
the noise is its instantaneous bound, these methods are not able to
efficiently identify the system.

SMI methods are the identification methods introduced to deal
with system identification when the noise is assumed to be un-
known but bounded. Here we consider noise bounded in the ℓ1
norm. Unlike the other identification approaches, which provide
an estimate, SMI methods propose the estimation of a feasible pa-
rameter set i.e. a model set compatible with all the available infor-
mation. There are two main possible structures for the design of
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this feasible parameter set: a polytope or an ellipsoid. In this paper
we shall investigate a particular type of ellipsoidal algorithm: the
Optimal Bounding Ellipsoid (OBE) type algorithms. The reason is
that their computational complexity is low and they are appropri-
ated to handle the identification problem in presence of bounded
disturbances. Some contributions have beenpresented in Canudas-
De-Wit and Carrillo (1990), Dasgupta and Huang (1987), Fogel and
Huang (1982), Pouliquen, Pigeon, and Gehan (2011) and Tan, Wen,
and Soh (1997).

In the abovemethods very few of them are devoted to the direct
identification problem expressed as |yt −G(q)ut | ≤ δw withG(q)
an IIR filter and δw fixed in advance. Among them, some are only
suitable for the identification of stable systems (Cerone, 1993a,b;
Clement & Gentil, 1990; Ferreres & M’Saad, 1997; Pouliquen et al.,
2011) and others have a high computational complexity (Cerone,
1993b; Cerone, Piga, & Regruto, 2012). Above all, none of them
ensures the estimation of amodelwhich stabilizes the closed-loop,
this is however an essential elementary property.

In this paper, to get around these difficulties,we consider the in-
direct identification problem expressed as

yt −
G(q)

1+G(q)C(q)
rt
 ≤ δv

with δv fixed in advance. In the above challenging problem, the
number of alternatives is very limited. One alternative is to use an
SMI algorithm in an indirect two steps approach: 1—the transfer
function G∗(q)

1+G∗(q)C(q) between rt and yt is identified, 2—G∗(q) is re-
trieved from the identified transfer function under the condition
that the controller is linear and known. This approach leads how-
ever to a high order model and the use of a model reduction step
would probably not maintain the property

yt −
G(q)

1+G(q)C(q)
rt
 ≤ δv .

This paper consists in the development of a new alternative which
alleviates some of the issues of the previous methods.

1.3. Contributions of this paper

The first key idea in our development is the proposition of
a first algorithm using an OBE type algorithm together with the
closed-loop Output Error (CLOE) parametrization introduced in
Landau and Karimi (1997). Such a parametrization is not linear in
the parameter vector. This non-linear effect impacts the stability
analysis and a main contribution is the establishment of stabil-
ity and convergence conditions of the algorithm. The second key
idea in our development is the relaxation of the previous stability
conditions via a second identification algorithm. This leads to the
estimation of a model such that

yt −
G(q)

1+G(q)C(q) rt
 ≤ δv without

over-parametrization. The current paper completes the work pre-
sented in Pouliquen, Gehan, Pigeon, and Frikel (2012).

The paper is organized as follows: the identification problem
is formulated in Section 2. In Section 3, two identification
algorithms are presented. The first one is described and analyzed
in detail in Sections 3.1 and 3.2, the second one is introduced
in Section 3.3. The proposed algorithms have been tested on a
numerical application, results are given in Section 4. Section 5
concludes the paper. Appendices contain most of the proofs.

2. Problem formulation

Consider the transfer function G∗(q) parameterized as

G∗(q) = q−d B
∗(q)

A∗(q)
(3)

with

B∗(q) = b∗

0 + b∗
1q

−1
+ · · · + b∗

nb
q−nb

A∗(q) = 1 + a∗
1q

−1
+ · · · + a∗

naq
−na . q−1 is the delay operator, d is

the delay, na and nb the degrees of respectively A∗(q) and B∗(q). Let
us denote θ∗

∈ Rn the parameter vector with n = na + nb + 1 the
number of parameters: θ∗ T

=

· · · a∗

i · · · b∗

i · · ·

. Making

use of the CLOE parametrization, yt =
G∗(q)

1+G∗(q)C(q) rt + vt can be

re-expressed as yt = ŷt + vt where ŷt is determined by ŷt = φT
t θ∗

with φt =

· · · −ŷt−i · · · ût−d−i · · ·


and ût−d−i = rt−d−i −

C(q)ŷt−d−i.
Objective: Given the degrees na and nb, the aim of this paper is

to present an identification scheme in order to find an estimateθ
for θ∗. The transfer functionG(q) parameterized byθ must satisfyyt −

G(q)

1 +G(q)C(q)
rt

 ≤ δv. (4)

This must be done by using the available data {rt , yt}, the knowl-
edge of the controller C(q) =

R(q)
S(q) and the upper bound δv .

The estimate for θ∗ at the instant t is denoted θ̂t . For this cur-
rent time t , ŷt is replaced by its a priori and a posteriori estimates
ŷt/t−1 = φ̂T

t θ̂t−1

ŷt/t = φ̂T
t θ̂t

. The pseudo linear regression vector φt is substi-

tuted by φ̂t which is simply obtained by replacing the unknown
component ŷt−i by its a posteriori estimate ŷt−i/t−i and ût−d−i by
its a posteriori estimate ût−d−i/t−d−i:

φ̂T
t =


· · · −ŷt−i/t−i · · · ût−d−i/t−d−i · · ·


with ût−d−i/t−d−i = rt−d−i − C(q)ŷt−d−i/t−d−i.

The a priori and a posteriori prediction errors are derived from
the previous definitions in the following form:


ϵt/t−1 = yt − ŷt/t−1
ϵt/t = yt − ŷt/t

.
Let us notice that the a posteriori prediction error ϵt/t can be easily
expressed as:

ϵt/t =
S(q)

A∗(q)S(q) + q−dB∗(q)R(q)
φ̂T
t θ̃t + vt (5)

where θ̃t = θ∗
− θ̂t denotes the parameter error vector.

3. Identification algorithms and analysis

3.1. The CLOE-OBE (closed-loop Output Error-OBE) algorithm

From (1) and (2) the parameter vector θ∗ belongs to the set
defined by

t
i Si with St =


θ ∈ Rn, |yt − φT

t θ | ≤ δv


. The first

OBE algorithm to be presented builds on that property in the sense
that its aim is to find a parameter vector θ̂t center of an ellipsoid
Et such that Et ⊃

t
i
Si where St is the observation set defined bySt =


θ ∈ Rn, |yt − φ̂T

t θ | ≤ δ

. δ is a user defined bound which

has to be specified taking into account the bound δv . Given (yt , φ̂t),St is the set of all possible θ which are consistent with the chosen
bound δ. An important property of this observation set is given in
the following theorem. In this theorem ∥.∥1 is the l1 induced norm.

Theorem 1. Consider a parameter vector θ̂t such that θ̂t ∈ St .
Assume that G∗(q) and δ are such that:1 −

A∗(q)S(q) + q−dB∗(q)R(q)
S(q)


1

< 1 (6)

δ ≥

 A∗(q)S(q)+q−dB∗(q)R(q)
S(q)


1

1 −

1 −
A∗(q)S(q)+q−dB∗(q)R(q)

S(q)


1

δv. (7)

Then

θ∗
∈ St . � (8)

This theorem states that the ability to find the true parameter
vector inside St depends on one condition on G∗(q) and one
condition on δ. From (7) the choice on δ depends not only on the
known controller C(q), and on the known bound δv but also on the
unknown polynomials A∗(q) and B∗(q). In Section 3.3 a filter will
be introduced so as to relax these hard conditions.
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