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a b s t r a c t

In this paper, we study the estimation of potentially unstable social dynamics—e.g., social and political
movements, environmental and health hazards, and global brands; when they are observed by a ge-
ographically distributed set of agents. We are interested in scenarios when the information exchange
among the agents is limited. This paper considers a generalization of distributed estimation to vector (non-
scalar) and dynamic (non-static) cases. As we will show, when the state-vector evolves over time, the infor-
mation flow over the communication network may not be fast enough to track this evolution. In this context,
the key questionswe address are: (i) can a distributed estimatorwith limited communication track an un-
stable system? and; (ii) what is the cutoff point beyondwhich the given observations and the agent topol-
ogy may not result into a bounded estimation error? To address these questions, we present a scalar-gain
estimator and characterize the relation between the system instability and communication/observation
infrastructure. We derive and analyze the aforementioned cutoff point as the Scalar Tracking Capacity,
and further show that unstable vector systems can be distributedly estimated with bounded error.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Social networks have recently seen a tremendous activity in
the control and signal processing communities. A lot of attention
has been devoted to the modeling and learning of relevant social
phenomena, e.g., opinions, fashion, and rumors; while market
trends in stocks and trading have also been studied, see Friedkin
(1998), Newman, Barabasi, and Watts (2006), Urry (2002) and
references therein. Typically, it is assumed that the social network
consists of agents that make partial observations of the underlying
phenomena while communicating over a sparse graph.

Several social modeling and interaction strategies have been
formulated. Static phenomenon that do not evolve over time
can be found in DeGroot (1974), Jadbabaie, Moolavi, Sandroni,
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and Tahbaz-Salehi (2012), Ram, Veeravalli, and Nedic (2010), Kar,
Moura, and Ramanan (2012), among others. For the estimation of
dynamic social models, related work includes Kalman-consensus
filters (Kirti & Scaglione, 2008; Olfati-Saber, 2005, 2007), and
learning in social networks (Acemoglu, Nedic, & Ozdaglar, 2008;
Acemoglu & Ozdaglar, 2011). However, the former is restricted
to a large number of communication iterations (in order to reach
average-consensus Xiao & Boyd, 2004) between every two steps of
the dynamics, see Fig. 1-left, while the latter assumes a neutrally-
stable scalar system. However, many multi-agent systems and
social interactions are observed to have unstable dynamics such as
social and politicalmovements, environmental and health hazards,
and global brands (Tyukin, Prokhorov, & van Leeuwen, 2007; Urry,
2002).

Given the existing development, we address the natural tran-
sition to the learning problems when the inter-agent communica-
tion is restricted. We refer to such estimators as single time-scale,
shown in Fig. 1-right. Next, we seek a characterization of the single
time-scale estimator when the dynamics are arbitrary, i.e., poten-
tially unstable (Tyukin et al., 2007; Urry, 2002); linearized mod-
els of fluid dynamics, global waves, or global fluids can also be
cast as relevant unstable systems (Urry, 2002). In particular, this
paper provides a simple scalar-gain estimator where the neigh-
boring observations and the prior estimates are weighted by a
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Fig. 1. (Left) Average-consensus; (Right) Single time-scale.

scalar parameter, α ∈ R. This scalar approach is non-trivial as it:
(i) provides a benchmark for the arbitrary (matrix) gain parame-
ters; (ii) is practically simpler to implement; and, (iii) results in
closed-form expressions—e.g., consider the scalar-gain average-
consensus in Xiao and Boyd (2004).

In the context of scalar-gain estimators,we introduce thenotion
of Scalar Tracking Capacity (STC). The STC is a positive real-number
such that every dynamical system whose 2-norm is strictly less
than the STC can be estimated with bounded error with the
proposed estimator. On the other hand, for every ∥A∥2 > STC , we
show that there exists a systemmatrix,A, that cannot be estimated.
We provide the closed-form capacity expression along with the
optimal scalar-gain and study the estimator performance as a
function of the STC. We also formulate some relevant properties
of the scalar-gain.

We now describe the rest of the paper. Preliminaries, notation,
and the single time-scale estimation are presented in Section 2.
Section 3 defines the Scalar Tracking Capacity, and further analyzes
the properties and performance of the scalar-gain estimator.
Finally, Section 4 provides simulations, and Section 5 concludes the
paper.

2. Problem formulation

In this section, we provide notation and the single time-scale,
scalar-gain estimator.

2.1. System dynamics and communication graph

The social phenomenon is modeled as a discrete-time, linear
dynamical system, perhaps after linearization and discretization,
with observations distributed overN agents in the social network2:

xk+1 = Axk + vk, k ≥ 0, (1)

yik = Hixk + rik, i = 1, . . . ,N, (2)

where xk ∈ Rn, (n > 1), is the state-vector, A is a potentially
unstable system matrix, vk is the system noise, yik ∈ Rpi is ob-
servation at the ith agent, Hi ∈ Rpi×n is the local observation ma-
trix, and rik is the local observation noise. We assume the standard
assumptions of Gaussianity and independence on the noise vari-
ables. The agent observations can be collected to form a global ob-
servation, i.e., yk = Hxk + rk, where yk, H , and rk are collections
of yik’s, Hi’s, and rik’s, respectively. We assume that the dynamical
system, Eqs. (1)–(2), is globally observable in one time-step, i.e., the
matrix

N
i=1 H

⊤

i Hi is invertible; any strict subset of agents is not
necessarily observable. The stability of the state dynamics is char-
acterized in terms of the induced 2-norm of the system matrix, A,
i.e., a , ∥A∥2 =

√
γn, where 0 ≤ γ1 ≤ · · · ≤ γn are the eigenval-

ues of the symmetric positive (semi) definite (PSD) matrix A⊤A.
The interactions among the agents in the social network are

modeled as an undirected and connected graph, G = (V, E),
where V = {1, . . . ,N} is the set of vertices, and E ⊆ V × V

2 See Friedkin (1998), Newman et al. (2006), Urry (2002) and references within
for details on social network modeling and corresponding phenomena of interest.

is a set of interconnections among the agents. The neighborhood
at the ith agent is defined as Ni , {j | (i, j) ∈ E} with (i, i) ∉

E . Letting Adj(G) to denote the corresponding adjacency matrix
and Deg(G) to denote the degree matrix, the graph Laplacian L is
defined as L = Deg(G)−Adj(G). We also assumeA = Adj(G)+ IN .

2.2. Scalar-gain estimator

Given the system dynamics in Eq. (1) with observations in
Eq. (2) and the agent communication over G; the goal of this
paper is to design a single time-scale estimator of xk as motivated
in Fig. 1-right. Extension to unstable vector dynamics has the
following challenges:
(i) since x is not static and evolves over time, the estimator gain

cannot be chosen to go to zero as considered inKar et al. (2012)
and related work;

(ii) since x is not scalar, any agent i is not necessarily observable
since


j∈{i}∪Ni

H⊤

j Hj may not be invertible; and,
(iii) since the system is not neutrally-stable, i.e., ∥A∥2 > 1, the

collaboration over G may not be fast enough to track the
system evolution.

To overcome these, we consider the following estimator:

xik+1 = Axik − αA

j∈Ni

xik −xjk − H⊤

j


yjk − Hjxik , (3)

wherexik+1 ∈ Rn is the estimate of xk+1 at agent i and time k + 1
and α ∈ R is a scalar-gain.
Motivation: It can be shown that when xk ∈ R and A = 1,
Eq. (3) reduces to the scalar estimator in Acemoglu et al. (2008).
Additionally, when A = In (n × n identity, n > 1), and vk = 0,
Eq. (3) reduces to the static scenario in Kar et al. (2012), while the
static parameter estimation, structurally similar to Eq. (3), has been
considered in DeMarzo, Vayanos, and Zwiebel (2003), Golub and
Jackson (2010), and Lopes and Sayed (2008). In particular, with-
out


j∈Ni

xjk in Eq. (3), agent i’s estimate does not include non-
neighboring observations. Since the estimator is single time-scale,
non-neighboring observations cannot be obtained at agent i by im-
plementing observation fusion, as in Olfati-Saber (2005);


j∈Ni

xjk
ensures that non-neighboring observations travel within the net-
work. Finally, note that themultiplierH⊤

j appearswith the innova-
tion term, (yjk−Hjxik), because each neighbor’s observation, yjk, is of
different length, pj; multiplying a pj × 1 vector, yjk, with n× pj ma-
trix,H⊤

j , ensures that the innovations, of length n×1, can be added.
The goal of this paper is to characterize the interplay between

the system instability, ∥A∥2, and information mixing supported by
the graph,G. The formulation here is restricted to a scalar-gain,α ∈

R, as a function of graph and observation parameters such that the
estimation error is bounded. Studying the scalar case provides an
intuition towards designing arbitrary (matrix) gains and further
results in (benchmark) closed-form expressions.
Estimation error: Let eik , xik − xk be the local error at agent i
concatenated in a vector, ek, i.e., the network error process. Let

DH , blockdiag


j∈N1

H⊤

j Hj,
. . . ,


j∈NN

H⊤

j Hj


, (4)

then the network error process can be written as

ek+1 = Pek + uk, (5)

where P , (IN ⊗ A)(InN − αQ ), the matrix, Q , (L ⊗

In + DH), can be verified to be symmetric, Positive Semi-Definite
(PSD), and uk , φk − 1N ⊗ vk, and φk , α(IN ⊗ A)

j∈N1
rjTk Hj . . .


j∈NN

rjTk Hj

⊤

.
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