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a b s t r a c t

In the present paper, we investigate the output-controllability and optimal output control problems of a
state-dependent switched Boolean control network. By using the semi-tensor product, the algebraic form
of the system is obtained. Then, output-controllability problems of the system are discussed and some
necessary and sufficient conditions are given. Next, the Mayer-type optimal output control issue is con-
sidered and an algorithm is provided to find out the control sequence. At last, an example is given to show
the effectiveness of the main results.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Since the Boolean networkswere proposed by Kauffman (1969)
to model and quantitatively describe the gene regulatory, great at-
tention has been attracted to the study of them from researchers
in many fields, such as biology, system science, and so on; see
Akutsu, Hayashida, Ching, and Ng (2007), Drossel, Mihaljev, and
Greil (2005) and Liang, Fuhrman, and Somogyi (1998) for example.
In Boolean networks, the state of a gene is described as active (1)
or inactive (0) and the interactions between each gene are deter-
mined by Boolean functions. The researchers have been in lack of
tools until the semi-tensor product is proposed in Cheng, Qi, and Li
(2011) by Cheng. Using the new tool, numerous control problems
have been studied, such as the stability and stabilization (Cheng, Qi,
Li, & Liu, 2011; Li & Sun, 2012c), the controllability and observation
(Cheng & Qi, 2009; Li & Sun, 2011, 2012a,b; Zhao, Kim, & Filippone,
2013), the realization (Cheng, Li, & Qi, 2010), the optimal control
problem (Laschov & Margaliot, 2011; Li & Sun, 2012a; Zhao, Li, &
Cheng, 2011) and so on.

Switched systems play an important role in the study of con-
trol theory. Because of the universality of switched systems, great
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attention has been drawn to the study of them and some excellent
results have been obtained; see Branicky (1998) and Geromel and
Deaecto (2009) and references therein. In practice, the dynamics
of biological systems are often governed by switching models (El-
Farra, Gani, & Christofides, 2005). Switched dynamics can be trig-
gered by inner and external causes. When the Boolean network
is applied in modeling biological systems, the dynamics become
the switched Boolean network. Some fundamental problems have
been investigated on switched Boolean control networks. In Li and
Wang (2012), the authors considered the reachability and control-
lability of switched Boolean control networks.

Output-controllability and optimal control issues are funda-
mental concepts in a control theory field. There has been a great
lot of literature studying on both topics; see Huang, Li, Duan, and
Starzyk (2012), Jin, Yang, andChe (2012) andKobayashi, Imura, and
Hiraishi (2009) and references therein. To the best of our knowl-
edge, referring to the controllability of switched Boolean control
networks, there exist no results except (Li & Wang, 2012). State-
dependent switching is one important kind of the switching sig-
nal with both theoretical meanings and practical applications; see
Liberzon (2003) for example. However, to the best of our knowl-
edge, there exists no result studying the state-dependent switched
Boolean control networks, which motivates the present research
on the output-controllability and optimal output control of state-
dependent switched Boolean control networks.

In the paper, we first present the state-dependent switching
Boolean control networks and obtain the algebraic form by us-
ing direct methods. The state-dependent switched Boolean control
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network can also be first transformed into a non-switched logi-
cal network. And then we can get the algebraic form of the sys-
tem. However, our method in the paper is more direct and easier
to understand. After getting the algebraic form of the system,
necessary and sufficient conditions are obtained for the output-
controllability of the system and an optimal output control de-
sign algorithm for the Mayer-type optimal output problem is also
given. We focus on the investigation of the system at a theoreti-
cal level. We believe that it is meaningful and it may offer help for
researchers in other fields, such as biological systems, systems sci-
ence and so on.

The rest of the paper is organized as follows. In Section 2, some
preliminaries, including somebasic concepts, notations and propo-
sitions, used in the paper are introduced. The main results are pre-
sented in Section 3. State-dependent switching Boolean control
networks are introduced, and the algebraic form of the system is
obtained. The definition for the output-controllability of the sys-
tem is provided. And then, the necessary and sufficient condition
is given. The Mayer-type optimal output control problem is also
considered, and an optimal output control design algorithm is pro-
vided. Section 4 shows an example to illustrate themain results ob-
tained in the paper. Lastly, conclusions are presented in Section 5.

2. Preliminaries

In this section, we introduce some necessary preliminaries on
the semi-tensor product, the crucial tool in the present paper.
The matrix product is assumed to be the semi-tensor product in
the following discussion. Following is a review of basic concepts,
notations and proposition in Cheng, Qi, Li et al. (2011).

Definition 2.1 (Cheng, Qi, Li et al., 2011). (1) Let X be a row vector
of dimension np, and Y = [y1, y2, . . . , yp]T be a column vec-
tor of dimension p. Then we split X into p equal-size blocks as
X1, . . . , Xp, which are 1×n rows. Define the semi-tensor prod-
uct, denoted by n, as
X n Y =

p
i=1

X iyi ∈ Rn,

Y T n XT
=

p
i=1

yi(X i)T ∈ Rn.

(2) LetM ∈ Mm×n and N ∈ Mp×q. If n is a factor of p or p is a factor
of n, then C = M n N is called the semi-tensor product of M
and N , where C consists ofm × q blocks as C = (C ij), and

C ij
= M i n Nj, i = 1, 2, . . . ,m; j = 1, 2, . . . , q,

whereM i
= Rowi(M) denotes the ith row of the matrixM and

Nj = Colj(N) denotes the jth column of the matrix N .

Remark 2.1. The semi-tensor product is a generalization of the
conventional matrix product. The semi-tensor product of two ma-
tricesM ∈ Mm×n and N ∈ Mp×q becomes the conventional matrix
product for n = p.

Next, notations used in the following paper are given.
(1) D := {0, 1}, ∆n := {δ1

n, . . . , δ
n
n}, where δk

n denotes the kth col-
umn of the identity matrix In.

(2) Let Mn×s denote the set of n × s matrices. Assume that a ma-
trixM = [δ

j1
n δ

j2
n · · · δ

js
n ] ∈ Mn×s, i.e., its columns, Col(M) ⊂ ∆n;

then M is called a logical matrix. The set of n × m logical ma-
trices is denoted by Ln×m.

(3) To use a matrix expression, we identify 1 ∼ δ1
2 , 0 ∼ δ2

2 . Using
this transformation, a logical function f : Dk

→ D becomes a
function f : ∆k

2 → ∆2.
(4) Consider a fundamental unary logical function, Negation, ¬P ,

and four fundamental binary logical functions, Disjunction,

P ∨Q ; Conjunction, P ∧Q ; Conditional, P → Q ; Biconditional,
P ↔ Q . Their structure matrices are as follows:

M¬ = δ2[2, 1];M∨ = δ2[1, 1, 1, 2];M∧ = δ2[1, 2, 2, 2];
M→ = δ2[1, 2, 1, 1];M↔ = δ2[1, 2, 2, 1].

(5) Define a swap matrixW[m,n], which is anmn×mnmatrix con-
structed in the following way: label its columns by (11, 12,
. . . , 1n, . . . ,m1,m2, . . . ,mn) and its rows by (11, 21, . . . ,
m1, . . . , 1n, 2n, . . . ,mn). Then its element in the position
((I, J), (i, j)) is assigned as

w(I,J),(i,j) = δ
I,J
i,j =


1, I = i and J = j,
0, otherwise.

(6) Define amatrixMr , called the power-reducingmatrix, asMr =

δ4[1 4]. Furthermore, construct the group power-reducingma-
trix as follows:

Φj =

j
i=1

I2i−1 ⊗ [(I2 ⊗ W[2,2j−i])Mr ]. (1)

Using the matrix expression, the following proposition could
be obtained.

Proposition 2.1 (Cheng, Qi, Li et al., 2011). (1) Let f (x1, x2, . . . , xk)
be a logical function; then there exists a unique 2× 2k matrix Mf ,
called the structure matrix, such that

f (x1, x2, . . . , xk) = Mf x,

where x= nk
i=1 xi ∈ ∆2k , Mf ∈ L2×2k .

(2) Let x ∈ Rt and A be a given matrix. Then xA = (It ⊗ A)x, where
⊗ denotes the Kronecker product.

(3) Let Ed =


1 0 1 0
0 1 0 1


. Then for any two logical variables X, Y

∈ ∆2, EdXY = Y or EdW[2,2]XY = X, where W[2,2] is the swap
matrix.

3. Main results

Consider a state-dependent switched Boolean control network:
x1(t + 1) = f σ(t)

1 (x1(t), . . . , xn(t), u1(t), . . . , um(t)),
x2(t + 1) = f σ(t)

2 (x1(t), . . . , xn(t), u1(t), . . . , um(t)),
...

xn(t + 1) = f σ(t)
n (x1(t), . . . , xn(t), u1(t), . . . , um(t)),

(2)

yj(t) = hj(x1(t), . . . , xn(t)), j = 1, 2, . . . , p (p ≤ n),
where xi(t) ∈ D, i = 1, 2, . . . , n are Boolean variables, ui(t) ∈

D, i = 1, 2, . . . ,m are control inputs and f σ(t)
i : Dm+n

→ D, i =

1, 2, . . . , n, hj : Dn
→ D, j = 1, 2, . . . , p are logical functions.σ :

N → W = {1, 2, . . . , w} is the state-dependent switching signal.
Define x(t) = nn

i=1 xi(t), u(t) = nm
i=1 ui(t), y(t) = np

j=1 yj(t).
Assume that the structure matrices for f σ(t)

i , hj isM
σ(t)
i , Sj, respec-

tively. Then, system (2) can be expressed in componentwise alge-
braic form as

x1(t + 1) = Mσ(t)
1 x(t)u(t),

x2(t + 1) = Mσ(t)
2 x(t)u(t),

...

xn(t + 1) = Mσ(t)
n x(t)u(t),

(3)

yj(t) = Sjx(t), j = 1, 2, . . . , p.
Multiplying both sides of Eqs. (3), one obtains
x(t + 1) = Lσ(t)x(t)u(t),
y(t) = Hx(t), (4)

where Colj(Lσ(t)) = nn
i=1 Colj(M

σ(t)
i ), j = 1, 2, . . . , 2m+n, and

Colj(H) = np
i=1 Colj(Si), j = 1, 2, . . . , 2n.
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