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A B S T R A C T

This paper presents an empirical study comparing different uncertainty analysis (UA) and sensitivity analysis
(SA) methods, focussing their usefulness for the output analysis of land use/land cover change (LUCC) agent-
based models (ABMs). As a result, a workflow to integrate UA and SA is presented to evaluate ABMs outputs. We
developed a baseline scenario and performed a comprehensive investigation of the impacts that differences in
sample sizes, sample techniques, and SA methods may have on the model output. The analysis is done in the
context of a particular agent-based simulator with a LUCC model in a Brazilian Cerrado case study. The ex-
periments indicate that there are known challenges to be overcome by the use of statistical methods. Even
though the presented analysis was done over a particular simulator, we intend to contribute to the community
that understands the importance of statistical validation techniques to improve the level of confidence in agent-
based simulation outputs.

1. Introduction

As cited in the literature, the land use/land cover change (LUCC)
systems are dynamic, stochastic, and characterized by nonlinear and
non-monotonic relationships between constant changing entities
(Parker et al., 2003; Verburg, 2006; Rindfuss et al., 2008). Besides,
agent-based models (ABMs) have been used as a natural metaphor to
model LUCC dynamics, since they capture emergent phenomena and
provide an original description of the modeled system
(Schreinemachers and Berger, 2011; Murray-Rust et al., 2013; Ralha
et al., 2013). However, ABMs are prone to uncertainty because they
reflect the intrinsic randomness of environmental, physical, and social
events. The uncertainty may also arise because of insufficient knowl-
edge, lack of data, observation errors, measurements used to para-
metrize the model, or from vague premises of the model (Ligmann-
Zielinska et al., oct 2014; Lilburne and Tarantola, 2009). As a result,
one could argue whether there is any quality in model predictions due
to high uncertainty and the considerable number of assumptions im-
posed by ABMs models.

In this scenario, uncertainty analysis (UA) and sensitivity analysis
(SA) are currently popular topics in ABMs as well as for many other
complex systems (Pappenberger et al., 2008). They are valuable tools in
understanding LUCC models and deriving decisions on strategies to
reduce model uncertainty. UA provides the variability of model results.
SA presents which factors are responsible for this variability. This

variability may be expressed quantitatively in terms of “elasticity” of
performance concerning parameter levels. High sensitivities (elasti-
cities) give cause for concern about the reliability of a model
(Dayananda et al., 2002). A factor is any source of uncertainty in the
modeling process, including model structure, initial conditions, and
input parameters. Using the terminology proposed by the National
Research Council (2012), uncertainty quantification (UQ) is the process
of quantifying uncertainties in a computed quantity of interest (QOI),
with the goals of accounting for all sources of uncertainty and quanti-
fying the contributions of specific sources to the overall uncertainty,
i.e., UA and SA applied in tandem.

Although UA and SA applications are rising, most ABMs struggle
with a shortage of testing in general, mainly due to time and other
resource constraints (Kelly (Letcher) et al., 2013). Lee et al. (2015)
argue that while a modeler invests a lot of time and effort in the de-
velopment of ABMs, the output analysis is not always considered as
deserving the same resource-intensive attention. According to a survey
carried out by Heath et al. (2009), less than 5% of ABM publications
present any statistical validation techniques. Angus and Hassani-
Mahmooei (2015) argue that one possible cause for this “methodolo-
gical anarchy” derives from the fact that, with so many possible degrees
of freedom within an ABM, the responsibility to ensure and to de-
monstrate that a model is structurally sound and the prediction is re-
liable falls into each modeler.

We present a UQ workflow to integrate UA and SA in the evaluation
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of agent-based simulation outputs. We illustrate the use of this work-
flow in a particular spatial explicit LUCC case study in the framework
Multi-Agent System for Environmental simulation, MASE-BDI. We
apply general practices that should be a routine, to improve the level of
confidence in results and to promote more rational and efficient use of
ABMs. We may cite that broader and more complete workflows for the
application of SA were already proposed, such as Pianosi et al. (2016)
and Norton (2015). The UA-SA integrated proposal is what set our
manuscript apart. We argue that UA should be used as an input to SA, in
a broader process of UQ. Also, we noticed some conflicting results when
we compared relevant studies on SA, mainly regarding the experi-
mental setup. Table 1 summarizes the studies found in the literature
(Vanrolleghem et al., 2015) (1), (Gan et al., 2014) (2), (Wang et al.,
2013) (3), (Yang, 2011) (4), (Pappenberger et al., 2008) (5), (Tang
et al., 2007) (6). Some authors have compared different SA methods
and experimental setup, which are presented in the different lines of the
table.

Table 1 illustrates a glimpse of the myriad of possible combinations
of strategies for sampling the model parameter space and SA methods,
to quantify the impacts of sampled parameters on the model QOI. We
understand that there is no combination of sampling and SA method
that fits all applications. Thus, the work of Gan et al. (2014) shows that
different sample strategies can even produce different outputs re-
garding the same SA method. Also, it seems that there isn't a clear re-
lationship between the number of factors and the number of necessary

runs to compute SA. Furthermore, in some cases, the number of runs
used in the same sampling and SA method is not even in the same order
of magnitude. For example, Pianosi et al. (2016) recommend
> × M1000 model runs to calculate variance-based SA, such as FAST,
where M is the number of input factors subject to SA. Neither Wang
et al. (2013) nor Vanrolleghem et al. (2015) nor Gan et al. (2014)
executed this many number of runs. The first used a sample of size 2049
for a 47-factor problem (instead of >47,000), while the second used a
sample size of 3000 for a 17-factor problem (instead of >17,000). The
third used a sample size of 2777 for a 13-factor problem (instead of
>13,000). One could ask whether the number of runs should be based on
something more than M.

In this manuscript, we will test different experimental strategies for
a UQ workflow and discuss their relative benefits and limitations. A
baseline scenario was developed, and we performed a comprehensive
investigation of the impacts that differences in sample sizes, sample
techniques, and SA methods may have on the QOI. In this work, we
address the research question: how UA and SA may be applied to im-
prove users' understanding of the uncertainty and relations among
input and output responses in LUCC agent-based simulations? We are
interested in finding which parameters are responsible for most of the
results’ variability; if there is convergence when different SA techniques
are applied; and finally, if there is a minimum sample size to achieve it.
Although the statistical techniques are applied in a specific agent-based
simulator, the methods described are quite general and may illustrate
their application in another research.

In Section 2, we provide an overview of the different methods re-
garding variance stability, parameter space exploration, UA, and SA.
We also present the proposed UQ workflow in Section 2. In Section 3,
we describe the MASE-BDI framework and LUCC model used as a case
study, followed by the experimental design. We present the results
compared to related work. We discuss challenges and provide some
assessment to extrapolate our finding into more general conclusions, to
produce more robust or parsimonious models, as well as to make
models more defensible in the face of scientific or technical controversy
(Section 4). Finally, in Section 5 , we summarize our findings and
outline future work.

2. Materials and methods

The methods we applied in the case study are presented in this
section alongside their experimental design. The UQ experiments have
the objective to perform an output analysis on spatial stochastic models,
to measure uncertainty and to reduce it. Ultimately, we want to un-
derstand better how the model behaves and expand our confidence in
the response of a LUCC model.

2.1. Variance stability

Agent-based simulations are often stochastic, and therefore any
analytical exercise requires an outcome pool drawn from a sufficient
number of samples. It is only possible to draw conclusions if the output
mean and variance reaches relative stability. Otherwise, the statistics
could harbor too much uncertainty to be reliable (Lee et al., 2015).
Moreover, some ABM simulations (MASE-BDI included) can take longer
run times, which makes the execution of large samples prohibitive.
Hence, knowing the minimum sample size to reach variance stability
can be more compelling to modelers.

There are many methods to assess variance stability (Law and
Kelton, 2000; Lee et al., 2015). We chose to apply the method proposed
by Lorscheid et al. (2012), whose strategy is to assess stability from
metrics on an outcome for a sequence of sample sizes. The proposed
metric relies on the functional ratio between the variance and the
sampled mean. The coefficient of variation cV is a dimensionless and
normalized metric used to measure the uncertainty surrounding the
variance, i.e., used for the analysis of experimental error variance. It is

Table 1
Selected applications of sensitivity analysis approaches.

Reference Research Field No. factors Sampling SA method No. runs

1 Urban 17 MOAT MOAT 3000
drainage FAST E-FAST 3000

LH SRC 2800
2 Watershed 13 MC SPEA 3000

MC SRC 3000
MOAT MOAT 3000
METIS MARS 3000
METIS SOT 3000
MC DT 400
LH DT 400
OA DT 529
OALH DT 529
LPTAU DT 3000
METIS DT 3000
METIS GP 3000
FAST FAST 2777
rLH McKey 2890
SOBOL-QR SOBOL 3000

3 Crop growth 47 FAST E-FAST 2049
4 Watershed 5 SOBOL-QR SOBOL 18000

MC MOAT 3000
MC LR 3000
MC RSA 3000
SOBOL-QR SDP 500

5 Flood 6 rLH SOBOL 8192
inundation rLH MOAT 12000

rLH Entropy-based 3000
rLH RSA 5000

6 Watershed 18 SOBOL-QR SOBOL 8192
IFFD ANOVA 1000
LH RSA 10000
LP PEST 10000

Where: MOAT=Morris screening One-at-A-Time; (E−)FAST = (Extended)
Fourier Amplitude Sensitivity Testing; (r)LH = (replicated) Latin Hypercube;
SRC= Standardized Regression Coefficient; MC=Monte-Carlo; LR= Linear
Regression; SPEA = Spearman Correlation Coefficient; MARS=Multivariate
Adaptive Regression Splines; SOT = Sum-of-Trees; DT=Delta δ Test; OA =
Orthogonal Array; OALH = Orthogonal Array-based Latin Hypercube; IFFD =
Iterated Fractional Factorial Design; SOBOL-QR= Sobol quasi-random;
RSA=Regionalized Sensitivity Analysis; LP= Local Perturbation; PEST =
Parameter Estimation Software.
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