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a b s t r a c t

This communique presents an algorithm called ‘‘value set iteration’’ (VSI) for solving infinite horizon
discounted Markov decision processes with finite state and action spaces as a simple generalization of
value iteration (VI) and as a counterpart to Chang’s policy set iteration. A sequence of value functions
is generated by VSI based on manipulating a set of value functions at each iteration and it converges
to the optimal value function. VSI preserves convergence properties of VI while converging no slower
than VI and in particular, if the set used in VSI contains the value functions of independently generated
sample-policies from a given distribution and a properly defined policy switching policy, a probabilistic
exponential convergence rate of VSI can be established. Because the set used in VSI can contain the
value functions of any policies generated by other existing algorithms, VSI is also a general framework
of combining multiple solution methods.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Consider a Markov decision process (MDP) (Puterman, 1994)
(X, A, P, R), where X is a finite state set, A(x) is a finite action set
at x ∈ X with


x∈X A(x) = A, R is a reward function such that

R(x, a) ∈ R, x ∈ X, a ∈ A(x), and P is a transition function that
maps {(x, a)|x ∈ X, a ∈ A(x)} to the set of probability distributions
over X . We denote the probability of making a transition to state
y ∈ X when taking an action a ∈ A(x) at state x ∈ X by Pa

xy.
We define a (stationaryMarkovian) policy π as amapping from

X to A with π(x) ∈ A(x),∀x ∈ X , and let Π be the set of all such
policies. Define the value function Vπ of π ∈ Π over X such that

Vπ (x) := E
 ∞

t=0

γ tR(Xt , π(Xt))|X0 = x

, x ∈ X,

where Xt is a random variable denoting state at time t by following
π and γ ∈ (0, 1) is a discounting factor.

Our goal is to find the optimal value function V ∗ where V ∗(x) =
maxπ∈Π Vπ (x), x ∈ X , or to find an optimal policy π∗ ∈ Π that
achieves V ∗(x) at all x ∈ X .

✩ The material in this paper was not presented at any conference. This paper was
recommended for publication in revised form by Associate Editor Nuno C. Martins
under the direction of Editor André L. Tits.
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Let B(X) be the set of all real-valued functions on X and define
a mapping L : B(X)→ B(X) such that for x ∈ X and u ∈ B(X),

L(u)(x) := max
a∈A(x)


R(x, a)+ γ


y∈X

Pa
xyu(y)


.

It is well-known that V ∗ uniquely satisfies L(V ∗) = V ∗ and the se-
quence of value functions {Uk} generated by iterative applications
of L with an arbitrary initial value function U0 ∈ B(X) such that
L(Uk) = Uk+1, k ≥ 0, converges to V ∗ and this exact method is
called value iteration (VI) (Puterman, 1994). Because L is a contrac-
tion mapping in B(X) with γ -contraction, VI’s convergence rate is
linear with the rate of γ and VI produces an ϵ-optimal policy for
any given ϵ > 0. The ϵ-optimal policy is guaranteed to be exactly
optimal for sufficiently small ϵ because Π is finite. VI’s running
time-complexity is polynomial in |X |, |A|, 1/(1 − γ ), and the size
of representing the inputs R and P (Blondel & Tsitsiklis, 2000).

VI is known to be one of the two exact dynamic-programming
methods along with policy iteration (PI) (Puterman, 1994). Due
to its simplicity and the exactness but the dimensional non-
scalability, since VI was developed by Bellman (1957), a great body
of works has been done to implement it in real applications and
to improve or approximate it (to have an approximately optimal
policy) over the decades (see, e.g., Bertsekas & Tsitsiklis, 1996,
Chang, Hu, Fu, & Marcus, 2013, Powell, 2011 and Puterman, 1994
and the references therein). In particular, there exist (classical)
variants of VI, e.g., Jacobi, Gauss–Seidel, action-elimination, etc.,
(see, e.g., Puterman, 1994 and other variants therein) aiming at
reducing computational complexity of VI and possibly improving
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the linear convergence rate by γ -contraction with no smaller
contraction. These methods maintain the exactness of VI and are
based on a single value-functionmanipulation. There are also some
more recent efforts on devising an exact algorithm as a variant of
VI to improve the convergence rate of VI by designing acceleration
operator/estimator (Herzberg & Yechiali, 1994; Shlakhter, Lee,
Khmelev, & Javer, 2010) or by using a sequence of truncated
models (Arruda, Ourique, LaCombe, & Almudevar, 2013) with a
single value-function manipulation but the degree of speeding up
is not theoretically quantified even if some experimental results
are provided to advocate these approaches.

In this communique, we present a novel exact algorithm called
‘‘value set iteration’’. (VSI) for solving MDPs as a simple generaliza-
tion of VI and as a counterpart to policy set iteration (PSI) recently
presented by Chang (2013). PSI is a generalization of PI bymanipu-
lating a set of policies at each iteration. As a counterpart to PSI, VSI
generates a sequence of value functions based on manipulating a
set of value functions at each iteration, as opposed to other existing
exact variants of VI, and it converges to the optimal value func-
tion. VSI preserves convergence properties of VI while converging
no slower than VI. In particular, if the value-function set used in VSI
contains the value functions of N ≥ 1 independently generated
sample-policies from a given distribution and a properly defined
policy switching policy (Chang et al., 2013), a probabilistic expo-
nential convergence rate of VSI can be additionally established in
terms of N but independently of γ , similar to PSI. This then poten-
tially overcomes a major problem of the dependence on 1/(1− γ )
in the running time-complexity of VI. Because the set used in VSI
can contain the value functions of any policies generated by other
existing algorithms, VSI is also a general framework of combining
multiple solution methods.

We note that even if VSI manipulates a set of value functions
as in PSI, PSI is based on extending the single-policy improvement
step of PI into a multi-policy improvement step whereas VSI is
based on a newly devised contraction-mapping operator in the
space of value functions. The operator is defined for the first time in
this work and iterative approximation by successive applications
of the operator is totally different aspect from PSI. Each iteration of
VSI requires O((N+m+1)(|X |2|A|+ |X |3)) time-complexity if the
set involved with VSI at each iteration contains N sample-policies
and m ≥ 0 additional arbitrarily chosen policies in Π . Therefore,
we establish that by allowing an increment in the per-iteration
time-complexity of VI by a factor of about N and by the amount of
evaluating the value functions in the set, no slower convergence
than VI in terms of the number of iterations is guaranteed
while achieving a probabilistic exponential convergence rate. We
provide a finite-time probabilistic error-bound in obtaining the
optimal value function for a given initial state distribution (cf.,
Theorem 4). One of the key ideas for the analysis is based on
a probability bound of sample-maximum estimate of a random
variable (Campi & Calafiore, 2009) obtained from the scenario
design method (Calafiore, 2010; Calafiore & Campi, 2006) to
effectively solve control design problems that can be cast in the
form of a convex optimization problemwith uncertain constraints.
In this sense, as in PSI, VSI takes the spirit of randomized methods
in probabilistic robust control.

2. Value set iteration

2.1. General framework

Let P (Π) be the power set ofΠ . Define a mapping T : B(X)×
P (Π) → B(X) such that for x ∈ X, u ∈ B(X), and nonempty
∆ ∈ P (Π),

T (u,∆)(x) := max
a∈A(x)


R(x, a)+ γ


y∈X

Pa
xy max


u(y),max

π∈∆
Vπ (y)


and T (u,∆)(x) := L(u)(x) if∆ = ∅.

The following lemma states that similar to L, V ∗ is a unique
fixed point of T for any ∆ ∈ P (Π) and T is also a contraction
mapping in B(X) for any ∆. In the sequel, the norm ∥ · ∥ denotes
maxx∈X |f (x)| for f ∈ B(X) and for u, v ∈ B(X), u ≤ (≥)v means
u(x) ≤ (≥)v(x) for all x ∈ X .

Lemma 1. With the mapping T , the following holds for any ∆ ∈
P (Π):

1. V ∗ uniquely satisfies T (V ∗,∆) = V ∗.
2. For any u, v ∈ B(X), ∥T (u,∆)− T (v,∆)∥ ≤ γ ∥u− v∥.

Proof. The proof of (1) is from the definitions of T and V ∗ and
Banach’s fixed point theorem. For the part (2), if∆ = ∅, it is trivial.
If∆ ≠ ∅, then for any x ∈ X and u, v ∈ B(X),

T (u,∆)(x)− T (v,∆)(x) ≤ γ

y∈X

Pa∗
xy


max


u(y),max

π∈∆
Vπ (y)



− max

v(y),max

π∈∆
Vπ (y)


where a∗ ∈ argmax

a∈A(x)


R(x, a)

+ γ

y∈X

Pa
xy max


u(y),max

π∈∆
Vπ (y)



≤ γ max
z∈X

max

u(z),max

π∈∆
Vπ (z)


−max


v(z),max

π∈∆
Vπ (z)


≤ γ max

z∈X

u(z)− v(z).
Changing the role of u and v, we have that T (v,∆)(x)−T (u,∆)(x)
≤ γ maxz∈X |u(z)− v(z)|. This concludes ∥T (u,∆)− T (v,∆)∥ ≤
γ ∥u− v∥.

We now provide VSI below. VSI degenerates to VI if ∆k = ∅

for all k ≥ 0. The structure of the algorithm follows that of VI.
A sequence of the value functions {Vk} is generated by successive
applications of T with V0 ∈ B(X)where an arbitrary∆k ∈ P (Π) is
employed at k.
Value set iteration (VSI)

1. Initialization: Select ϵ > 0. Set k = 0 and choose any V0 ∈

B(X).
2. Loop:

2.1 Select∆k ∈ P (Π) and obtain Vk+1 = T (Vk,∆k).
2.2 If ∥Vk+1−Vk∥ ≤ ϵ ·

1−γ
2γ , exit the loop. Otherwise, k← k+1.

The parts of (1) and (2) of the following theorem establish the
similar bounds on the performance of VSI to VI’s and (3) shows
that VSI terminates in a finite number of iterations. That is, VSI
preserves themain convergence properties of VI. The part (1) states
that {Vk} converges to V ∗ with a linear convergence rate of γ
and the part (2) states that the policy πk defined with Vk+1 is ϵ-
optimal. In addition, the part (4) establishes that Vk+1(x) is lower
bounded by maxπ∈∆k V

π (x) for all x ∈ X so that ∥V ∗ − Vk+1∥ ≤

maxx∈X |V ∗(x) − maxπ∈∆k V
π (x)|. We will further investigate the

usefulness of this property later (cf., Theorems 3 and 4). Finally, by
the part (5), VSI converges to V ∗ no slower than VI in terms of the
number of iterations.

Theorem 2. For the sequence {Vk} generated by VSI, and the policy
πk defined such that for all x ∈ X,

πk(x) ∈ argmax
a∈A(x)


R(x, a)+ γ


y∈X

Pa
xyVk+1(y)


,
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