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a b s t r a c t

The European directives for ambient air quality require to assess areas where air pollutant concentrations
exceed a regulatory threshold. As the spatial distribution of the pollutant is not exactly known, deter-
ministic atmospheric dispersion models are commonly used to supplement the observational network.
To reduce the computational time, the simulations are made on irregular grids, especially in urban areas
where the grid is refined close to the roads. An interpolation method is then necessary to map the
dispersion model at any location. We propose a new geostatistical approach based on kriging with
external drift to distinguish the information along and across the roads. An exponential function is
introduced to describe the decrease of the concentrations across the roads. Its series expansion is used to
build a set of polynomial auxiliary predictors with unknown coefficients. This framework leads to a drift
that is more generic and flexible in the kriging system.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The European legislation (Directive, 2008/50/EC, 2008) on
ambient air quality defines some environmental objectives,
expressed as annual/daily/hourly averaged concentrations or
maximum numbers of days/hours in exceedance depending on the
pollutant and the time resolution.

When one or several thresholds are exceeded, the member
states have to delineate the spatial extent and the population
exposed to these exceedances. A lot of studies estimate the expo-
sure to exceedances by crossing a map of concentrations with a
static map of the population, i.e. counted at their place of residence,
which is also the norm in the European regulation. For this reason,
this work falls within this framework and is focused on the
improvement of the concentration maps, without worrying about
the issue of the cross combination with the population. However, a
growing umber of studies have recently estimated the same
exposure, but taking into account the dynamic aspect of the

population that moves and sometimes works away from the resi-
dential areas. These works are mostly built on activity-based
exposure models (Beckx et al., 2009; Hatzopoulou and Miller,
2010; Jantunen et al., 1999; WHO, 2005) or simulations of the
daily movement of the population, using for instance mobile phone
tracking (Liu et al., 2013; Gariazzo et al., 2016).

When occurring in urban areas - and it is mostly the case for NO2
and PM10 - the exceedances are usually assessed by using urban
scale dispersion models. Let us note M this type of model. To limit
the computational costs, a widespread practice is to calculate the
concentrations in a two-step procedure: first, the concentrations
ZðxaÞ are simulated on the irregular grid fxaga¼1;/;p with a coarse
regular resolution in background areas and a higher adaptative
resolution close to the roads (see e.g. Leel}ossy et al., 2014); next,
they are interpolated on a regular grid with high resolution over the
whole domain of simulation D . Regarding the observational data
Tðxa0 Þ (fixed monitoring sites, passive sampling measurements)
available at locations fxa0 ga0¼1;/;d ðd<pÞ, they are seldom intro-
duced in a data assimilation framework (Tilloy et al., 2013) to
reduce the errors made by the dispersion model M . A kriging-based
combination of simulated data and passive sampling measure-
ments can also be performed, see e.g. ASPA (2014) technical report.
In that case, the frequency and the extent of the sampling
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campaigns play an important part in the quality of the results.
As a consequence, the final mapping of ZðxÞ over D mostly

depends on three criteria: the number p of xa in the simulation
(also denoted as the receptor points), their locations and the pre-
cision of the interpolation technique. In air quality, the simulated
concentrations are usually interpolated by linear methods imple-
mented in post-processing tools, such as Climate Data Operators
(CDO), Netcdf Operators (NCO), see Zender (2016). In the urban
configuration, there is an additional difficulty because the con-
centrations come from both traffic-related and background sources
of pollution. Thus, according to the spatial distribution of the re-
ceptor points, the usual interpolation methods may lead to some
artifacts.

In this paper, an original adaptation of kriging-based interpo-
lation is proposed for the simulations made by an urban-scale
dispersion model. First, a review of the standard existing ap-
proaches is presented. Then, an external drift modelling is intro-
duced to assess the behaviour of the concentrations across the
roads. The concentration ZðxÞ simulated by the model is seen as a
stochastic process explicitly decomposed into a deterministic part
mZðxÞ and a zero mean second-order stationary random fieldWðxÞ.
The series expansion of the exponential function is used to linearize
the expression of the deterministic part, and thus stick to the usual
kriging with external drift framework (Chiles and Delfiner, 2012).

The three next sections are dedicated to an application of the
methodology on the French city of Orl�eans in 2010 (source LIG’AIR):
the NO2 annual mean simulated by the ADMS-Urban air quality
model is considered. In Section 3, the dataset for both ZðxaÞ and
Tðxa0 Þ are presented, as well as the traffic emissions used to build
the predictors ofmðxÞ. Section 4 compares the results of a selection
of standard interpolators and the exponential drift framework in
terms of mapping and cross-validation scores. A detailed study
concerning the advantages of the series expansion is also provided
with additional guidelines regarding the truncation of the series
and the minimal number of receptor points to use. Last, a discus-
sion is given to comment some key points of the methodology, and
in particular the consequences of the polynomial approximation on
the coefficients of the drift estimated by kriging. Section 5 is
focused on a kriging where the interpolation ZKðxÞ of the simula-
tion dataset is used as an external drift to improve the estimation
TKðxÞ of the data collected from a passive sampling campaign.
Finally, Section 6 is dedicated to software availability, just before
the conclusion of the paper.

2. Materials

2.1. Overview of commonly used approaches

The linear interpolation is widely used to provide air quality
model outputs anywhere in space, whatever the scale the model
deals with. It is considered as valid when the variations between
the xa’s are low or when the distances between the xa’s are small: a
few meters in traffic-related configuration but up to a few kilo-
meters for low background concentrations. More recently, Fortin
et al. (2012) developed a method based on the Delaunay triangu-
lation; see also Lixin et al. (2011) for further applications of the
Delaunay triangulation to air quality interpolation. Assuming that
the pollutant concentration along the triangle edges varies linearly,
polygons linking all the positions where the concentration is equal
to a given value are defined. Last, the (ordinary) kriging (Chiles and
Delfiner, 2012) is a linear combination of the data with optimal
weights satisfying unbiasedness constraint E½ZKðxÞ � ZðxÞ� ¼ 0 and
optimality for the variance of the error Var½ZKðxÞ� ZðxÞ�.

The statistical, geostatistical and GIS software make it possible

to implement linear or Delaunay interpolation and ordinary kriging
with limited effort. In addition, an evaluation study (Beauchamp
et al., 2016) using 5 different French urban datasets (Bourges,
Nantes, Niort, Orl�eans, Reims and Tours) has shown the relative
efficiency of the linear and Delaunay interpolation compared to
ordinary kriging. This can be explained by the non-stationarity
related to the multi-source origin of the concentrations (either
influenced by the traffic or only reflecting the background pollu-
tion). Ordinary kriging is not able to account for it when dealing
with few data. Jeannee and Lemarchand (2012) handled this issue
by considering locally varying anisotropies, but other kriging op-
tions are available, in particular universal kriging based approaches
(see Section 2.2), in which the non stationarities are taken into
account through the modelling of the deterministic part mðxÞ, also
called the drift, of the random process. Other interpolators (inverse
distance, nearest neighbour, Akima's interpolator) will not be
considered in this paper because they are too simplistic and only
relevant for smooth concentrations fields.

More sophisticated estimation methods are not addressed in
this paper. They could be useful if hourly/daily simulation outputs
are considered instead of the annual-averaged values. Among
them, the BayesianMaximum Entropymethodology (BME) that is a
superset of classical geostatistics interpolators has already been
used in air pollution and atmospheric studies (Christakos and Li,
1998; Christakos et al., 2004; Yu et al., 2016, 2011). The growing
popular estimation approach through the SPDE (Stochastic Partial
Differential Equation) framework (Lindgren et al., 2011) must also
be mentioned. An interesting application to space-time PM10
pollution data is made in Cameletti et al. (2012) using the INLA
(Integrated Nested Laplace Approximation) computational
approach. A basic introduction to these methods is given in
Appendix A.

2.2. Traffic-related external drift modelling

In urban areas, the pollution at a location x can be considered as
the sum of a background component and a traffic-related contri-
bution due to the emissions of the roads in the close neighbour-
hood of x. To simplify, these two components will be supposed
spatially independent, see for instance Font et al. (2014). Let denote
ZðxÞ the concentration simulated by the model M at x, not to be
mistaken with the true value of the concentration, denoted as TðxÞ
and introduced later in Section 2.5. YðxÞ is the random function
related to the background feature and SðxÞ is the random function
that deals with the pollution increment related to traffic emissions:

ZðxÞ ¼ YðxÞ þ SðxÞ (1)

The independence between YðxÞ and SðxÞ can be checked out by
averaging the values SðxaÞ at locations xa’s considered as traffic-
influenced per urban background concentration classes ðy1; /;

yPÞ. YðxaÞ is not known but may be obtained either by roughly
removing the traffic-related sources in the air quality simulation or
by kriging the background data, i.e the receptor points located far
enough from the road network. In the literature, more sophisti-
cated models can also be used to estimate this quantity, see e.g.
Pournazeri et al. (2014). The appropriate definition of ”far enough”
depends on the corresponding environments, so that the model in
Eq. (1) is correct. According to the literature (see for example
Baldwin et al., 2015; Zou et al., 2006; Gilbert et al., 2003; Roorde-
Knape et al., 1999) and repeated results from regular campaigns
in France, the direct impact of road traffic can be considered
insignificant 400m away from the road: thus, it possibly holds as
true for similar environments elsewhere. As a consequence, when x
is located more than 400m away from the road, SðxÞ is neglected.
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