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a b s t r a c t

Rainfall is low and unreliable in much of Australia's dryland cropping areas, requiring well-informed crop
management for optimising yield and profit. Growing-season rainfall is usually supplemented by soil
water during fallow periods preceding a crop. While rainfall is conveniently measured, the difficulty of
measuring a soil's plant available water (PAW, mm) has led to using simulation models for estimating
PAW. Here we developed a smartphone application (app) that simulates soil water balance by accessing
weather, soil and crop data from databases and on-farm records. Predictions of PAW using the Howleaky
modelling engine were compared with field measurements. Validation of the simulation engine across
sites in Australian cropping areas showed good agreement between simulated and measured PAW. Errors
in model estimates are compared with variability found within small fields. We conclude that estimating
PAW for paddocks using a simulation model built in a smartphone app is a reliable and adaptable
technology.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Crop production in Australian agriculture is limited by the water
supply and water use efficiency (WUE, kg/ha/mm; French and
Schultz, 1984) of farming systems. Many dryland farmers are
familiar with concepts of yield targets based on WUE which relates
crop yield directly to water supply (water stored in the soil at
planting plus in-crop rainfall). WUE is simple, transparent and well
suited to communication with farmers. In a study of 334 com-
mercial wheat crops, Hochman et al. (2009) found a WUE value of
15 kg/ha/mm and a threshold value of 67mm. Nutritional disor-
ders, pests and disease reduce yield below these guideline values of
WUE and provide evidence of crop disorders (Cornish and Murray,
1989). Nevertheless, the importance of water supply to dryland
crops is overarching, as summarised by Routley (2010); “Water
supply is clearly the factor most limiting the productivity and
profitability … primary aim of dryland cropping systems … maxi-
mise the efficient capture, storage and use of this limited water.” In
the northern and drier areas of southern Australia there is insuffi-
cient rainfall during crop growth to achieve economically viable

yields, so fallows are used to accumulate soil water to supplement
in-crop rain. This dependency on water stored in a fallow varies
from 5% inWestern Australia to 60% in central Queensland (Thomas
et al., 2007). The need for improved soil water management may
increase in the future under a changing climate as climate adap-
tations are likely to have a greater reliance on stored soil water
(Kirkegaard et al., 2014; Ghahramani et al., 2015).

Major investments in crop production occur at planting time
and shortly after, when an uncertainwater supplymakes prediction
of yield and financial return difficult. Financial losses from both
under-investing and over-investing in crop inputs are common, but
having a robust estimate of soil water at sowing time can reduce
uncertainty (Thomas et al., 2007). Management options and farm
financial risk profiles can be decided by soil moisture status of a
paddock. A high potential yield attracts greater investment in crop
establishment, nutrition (Moeller et al., 2009), crop protection and
informsmarketing decisions. On the other hand, low yield potential
informs a variety of agronomic and business decisions with inputs
often being reduced. Although predicting grain yield before or early
in the growing season is challenging, applying theWUE framework
to predict yield is well established (French and Schultz, 1984;
Moore et al., 2011) and is improved by a reliable estimate of plant
available water (PAW) near planting. PAW is water that is available
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to plants during the crop phase, is regarded as “safe” water as it is
mostly immune to evaporation loses due to its depth of storage and
sustains crops between rainfall events.

PAW is calculated for each soil layer from the difference be-
tween gravimetric water content (g g�1) and the soils lower limit
(LL or wilting point) and considering the thickness and bulk density
of each soil (Lawrence et al., 2005). Plant available water capacity
(PAWC) refers to a soil's capacity to storewater and is often taken as
a soil property, although it can be dependent on crop type. PAWC is
calculated from a soil's LL and drained upper limit (DUL or field
capacity) (Dalgliesh and Cawthray, 2005). Estimating PAW and
PAWC is expensive and labour-intensive.

In this paper, we explore errors in predicting soil water using a
water balance model along with an analysis of spatial variability in
relatively small fields. It is recognised that there are errors associ-
ated with instrument calibration and estimating basic soil proper-
ties such as bulk density and LL required in calculating PAW
(Dalgliesh et al., 2009). Because of these errors and high spatial
variability in field conditions, PAW is not a variable to be measured
directly in a simple manner by farmers and consultants. Early
simulation models of crop growth and yield were focused on pre-
dicting the supply of soil water with a view tomanaging crop water
use and increasing WUE (e.g. Fitzpatrick and Nix, 1969; Nix and
Fitzpatrick, 1969).

The capability to estimate PAW within soil and cropping sys-
tems models, such as Howleaky (McClymont et al., 2016) and
Agricultural Production Systems Simulator (APSIM) (Holzworth
et al., 2014) is largely inaccessible to practical agronomists and
farmers as those models were designed as research tools, not as
information products. Decision support tools that do incorporate
soil and crop dynamics such as Yield Prophet (https://www.
yieldprophet.com.au) require considerable system specification
whereas the app being introduced here aims to provide a robust
and rapid estimate of soil water, aimed at farmers and consultants
as users.

In developing a smartphone app to provide estimates of PAW to
farmers and their consultants, it was considered prudent to un-
derstand the accuracy and reliability of a model based estimate of
PAW. Confidence in the performance of models is usually obtained
by comparison with field observations for the key variables of in-
terest to the scientist, such as runoff, erosion and water quality
(Knisel, 1980; Williams, 1983; Littleboy et al., 1992) or crop biomass
and yield (Carberry et al., 2009), while it has largely been assumed
that models accurately predict PAW. Such a narrow focus is ex-
pected as most components of the water balance are difficult to
measure. For example, runoff is infrequent and unpredictable,
making it difficult to maitain equipment (Freebairn et al., 1986),
while deep drainage is technically difficult to measure and subject
to high spatial variability (Humphreys et al., 2003). While evapo-
transpiration is more spatially homogeneous and accurately
measured variable in a water balance analysis, calculations of the
Bowen Ratio (Fritschen, 1965) and related methods require
advanced instrumentation, complex mathematics and are labour-
intensive and expensive. These methods are almost exclusively
applied where crops are growing, and water flux to the atmosphere
is unable to be apportioned to soil evaporation and transpiration.

The analysis presented herewas part of the design of a virtual soil
water monitoring system, SoilWaterApp, which is aimed to meet
farmer and adviser needs. We evaluate the water balance model in
Howleaky (McClymont et al., 2016) used in SoilWaterApp to esti-
mate changes in PAW. Also, we investigate the ability of a smart-
phone app to estimate the components of water balance from
meteorological, soil and crop information, providing estimates of
PAW for improved crop management through system design. Soil-
WaterApp is available from the Apple Store in Australia and

documented at http://www.soilwaterapp.net.au. SoilWaterApp has
some special features: fast simulation of the water balance on a
smartphone or tablet; connection to climate, soil and crop data-
bases; accept on-farm data; and sufficiently user-friendly to
accommodate a wide range of users including farmers and
consultants.

2. Water balance model

The water balance model used in the app has evolved from
CREAMS (Knisel, 1980) which predicted PAW, runoff and soil
erosion from a combination of rainfall and evaporation datawith (i)
the runoff model of Williams and LaSeur (1976), (ii) the soil evap-
oration model of Ritchie (1972) and (iii) the USLE for soil erosion
(Williams, 1983). CREAMS was influential in the development of
PERFECT (Littleboy et al., 1992) and later Howleaky (McClymont
et al., 2016). The latter model uses the Williams-Ritchie water
balance model (Williams and LaSeur, 1976; Ritchie, 1972) which is a
one-dimensional mechanistic model, with parameterisation
strongly based on a wide range of empirical studies (Littleboy et al.,
1992; http://Howleaky.net/index.php/library). Simulation is per-
formed on a daily time step. Surface runoff is estimated as a func-
tion of daily rainfall, soil water deficit, surface residue and crop
cover. The model has a “cascading bucket” structure where infil-
tration is partitioned into soil layers from the surface, filling sub-
sequent layers to total porosity. In the model, vertical water
movement occurs if the layer is wetter than its field capacity and
the layer below is drier than its field capacity. Water flux is limited
by the saturated hydraulic conductivity of each layer. Soil water can
be removed from the profile by transpiration, soil evaporation and
downwards movement from the lowest layer as deep drainage.
Transpiration is a function of pan evaporation (a climate input), leaf
area or percentage green cover and soil moisture. Soil evaporation
removes soil water from the upper two layers. The sum of tran-
spiration and soil evaporation (evapotranspiration) cannot exceed
pan evaporation on any day. A summary of the soil water balance
model in Howleaky is presented in the supplementary material S1.

3. Architecture: software and data

SoilWaterApp has been developed for iOS devices using Apple's
native Objective-C framework and communicates with a central
cloud-based server for synchronising both app and user data.
Operating the app involves setting up and monitoring a range of
“sites” with different agro-climatic variables. Selecting a site in the
user-interface will present an “analysis page” which automatically
updates the soil-water results for the latest climate conditions us-
ing the HowLeaky model. During this process, it will update any
outdated climate data and provides the user with a range of input
and output infographics that progressively disclose more detail as
the user scrolls down (Fig. 1). Inputs are presented at the top of the
analysis page and are grouped into soil, starting conditions, fallow/
crop conditions, irrigation, local rainfall and soil-water sensor op-
tions. Outputs include a summary of predicted PAW; a time-series
of recent, historical (past years) and predicted plumes of soil-
water, recent stubble and crop cover; a soil-moisture profile
graph; and a water-balance summary table.

The App has been developed with a multithreaded design for
parallel processing of data input, output and analysis streams. It is
composed of a range of independent functional modules for data
input, storage and synchronisation and for running soil-water an-
alyses using the HowLeaky Engine. Fig. 2 shows these modules and
how they interact with each other and external data sources.
Database operations are handled by a CoreData Manager module
and multiple synchronised database instances known as “managed
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