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a b s t r a c t

A unified approach to Multiple and single State Dependent Parameter modelling, termed Extended State
Dependent Parameters (ESDP) modelling, of nonlinear dynamic systems described by time-varying dy-
namic models applied to ARX or transfer-function model structures. Crucially, the approach proposes an
effective model structure identification method using a novel Information Criterion (IC) taking into ac-
count model complexity in terms of the number of states involved. In ESDP, model structure involves not
only the model orders, but also selection of the states driving the parameters, which effectively prevents
the use of most current IC. This leads to a powerful methodology for investigating nonlinear systems
building on the Data-Based Mechanistic (DBM) philosophy of Young and expanding the applications of
the existing DBM methods. The methodologies presented are tested and demonstrated on both simu-
lated data and on high frequency hydrological observations, showing how structure identification leads
to discovery of dynamic relationships between system variables.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The Data-Based Mechanistic methodology (DBM, Young, 1999a)
is built on the premise that the model structure and parameters are
to be determined through statistical analysis of observed data
(‘data-based’) which then, along with model metrics leads to a
physical interpretation of the model (‘mechanistic’).

The presented approach completes the nonlinear DBM model-
ling process by adding an objective identification stage to the
nonlinear model selection. Multiple and single State Dependent
Parameter (MSDP and SDP) modelling follows the DBM method-
ology by not parameterising the individual nonlinearities, however
the selection of the model structure, including that of the nonlinear
drivers, is the key element missing from the current method.

While MSDP employs a very different numerical engine to SDP,
conceptually and in terms of the outcome, it is a multi-variable
extension of the original SDP and thus, a generalisation of SDP that
is not confined to one state dependency. However, both in SDP and
then MSDP, the states’ values were assumed equidistant, having the
same distance in the state-space between each sample, which is a
simplifying assumption. The solution introduced in this paper

removes this assumption and makes the method fully general.
The newmodel structure identification procedure allows for the

first time identification of nonlinear structural relationships in an
objective manner using a robust and tested model form. This is
demonstrated in the paper using high frequency hydrological ob-
servations, where the output variable is thought to be affected by
more than one nonlinear process.

The terminology, explanation and clarification for the above are
laid out below in a logical and methodical manner designed to lead
the reader first through existing SDP andMSDPmethodologies, then
through the process of updating and extending these methodologies
into one methodology described in this paper (ESDP e Extended
SDP) with useful output tools. Finally, through the process of pro-
ducing a generalised Model Structure Identification (MSI) procedure
to identify the structure from a given data set for the application of
ESDP. The MSI procedure is generalised in that it considers - no state
dependency for each parameter (linearmodel) and one ormore state
dependencies for one or more parameters (nonlinear model).

1.1. Objectives and structure of this paper

This paper presents three key updates and additions to the SDP
and MSDP methodologies leading to their unification and gener-
alisation (items 1,…,3), and one major development (item 4) for
applying the DBM approach to model structure identification in
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this new setting:

1. Transition to a true state-space for parameter estimation by
moving from equidistant states to arbitrary-distant states, based
on the state values. The terms and context of ‘state-space’ and
‘states’ are clarified and discussed in section 1.4 and onwards
(Section 2.0).

2. Formation of multivariable parameter maps from M-dimen-
sional state dependent parameters for the purposes of basic
model validation andmore importantly, for forecasting, scenario
investigation and on-line simulation of live events (Section 2.1).

3. Use of model validation techniques to not only quantify the
ability of the presented algorithms in parameter estimation, but
also to validate any models identified from the model structure
identification development step below (Section 2.2).

4. Development of a DBM approach for model structure identifi-
cation (MSI) from a group of data sets for a given model type so
that the data informs us which measured variables are more
influential to the observed model output e importantly this
methodology also considers a linear model, allowing for a ‘pure’
DBM approach (Section 3.0).

The whole approach is then applied to a hydrological example
using a dynamic model of streamflow generation, thus forming
objective 5 (Section 4.0).

1.2. Applications

The methodologies presented are general and can be applied to
any system as long as time-series data for all the required variables
(including inputs, outputs and additional states) are available. In
terms of specific environmental applications, we have evaluated
the approach for data in the two applications below, and present
the former in this paper:

� Flood scenarios e how the flood response of a stream may be
strongly affected by more than multiple nonlinear process, not
solely the nonlinear effects of varying catchment wetness
(Chappell et al., 2017).

� Water quality dynamics e how the dynamics of one output
water quality variable (e.g., Dissolved Organic Carbon concen-
tration) may be affected by more than one nonlinear process,
related to separate effects of e.g., rainfall, soil temperature and
solar radiation (Jones et al., 2014).

For clarity and in order to introduce the notation, this paper also
briefly covers the progression from Transfer Function (TF) to SDP TF
(for a more detailed account see Young, 2000) and MSDP TF, with
the novel generalisation elements introduced. Significantly, the
development of the structural identification methodology for this
wide class of nonlinear models is then covered.

1.3. Background to SDP

There is extensive work on modelling input-output dynamic
time-series data using Transfer Functions (TF or equivalent Auto-
Regressive with eXogenous inputs, or ARX models) where linear
or approximated linear relationships are used (Ockenden and
Chappell, 2011; Tych et al., 2014; Ampadu et al., 2015; Chappell
et al., 2017) as well as extensions into Time Varying Parameter
(TVP) TF (Gou, 1990) and further extensions into State Dependent
Parameter (SDP) TF (Young et al., 2001) with latter approaches
using nonlinear functional relationships between states of the

system and the ARX or TF parameters.
SDP modelling assumes that the system is truly nonlinear in that

the TF parameters are time varying; importantly, the rate of change
of the parameters is at a rate related to the rate of change within the
state variables. This is unlike the more commonly seen time varying
parameter TF models, where the parameters change smoothly. Here,
the parameters are functions of the input or other states of the
system under study. SDP, as originally published by Young (2000)
bears the assumption that each parameter is a function of one var-
iable only, and has been successfully applied to many nonlinear
systems (e.g. Young et al., 2007a; Taylor et al., 2009; McIntyre et al.,
2011). However, many systems, particularly in the natural environ-
ment, are complex dynamic systems with many variables that have
interlinking relationships, e.g. water quality (Jones et al., 2014), at-
mospheric chemistry (Seinfeld and Pandis, 2016), and climate
change (Ashkenazy et al., 2003; Young and Garnier, 2006). The pa-
rameters of models describing these environmental systems, or even
just their specific aspects, could be functions of more than one var-
iable and hence the need to generalise SDP modelling into the
Multiple State Dependent Parameter (MSDP) modelling.

1.4. ARX - Transfer function (TF) e Time Invariant and Time varying
parameter (TVP) issues

We begin with a simple linear discrete time dynamic model
with time varying parameters (ARX or equivalent TF structure
(Young, 1999b)) that relates a single input variable (ut) to an output
variable (yt) and can be written as a difference equation (1). Due to
the time-varying character of parameters the standard backward
shift TF models are not applicable.

yt ¼ �a1;tyt�1 �…� an;tyt�n þ b0;tut�d þ b1;tut�d�1 þ…

þ bm;tut�d�m þ et (1)

where d is a pure time delay (measured at this stage in sampling
intervals), et is a zero mean, serially uncorrelated input with vari-
ance s2 and Gaussian amplitude distribution. The latter (Normality)
assumption is usual, but not required for the Kalman Filter to
function (Kalman, 1960 e the distribution needs to be finite and
symmetric).

Expressing (1) as a vector equation we obtain the TVP obser-
vation equation:

yt ¼ zTt pt þ et (2)

where,

zTt ¼ ½ � yt�1 � yt�2 / � yt�n ut�d / ut�d�m�

pt ¼
�
a1;t a2;t / an;t b0;t / bm;t

�T
When pt changes slowly/smoothly there are methods to estimate
these changes taking advantage of the smoothness assumption (see
for example Dynamic Transfer Function or DARX models e Young,
2011).

However, many environmental systems can be described as
complex and nonlinear, where the rates of change of the parame-
ters vary at a rate commensurate to those of other, exogenous
variables. This means the changes in pt are too rapid to apply the
smoothness assumption (slow parametric changes) and so other
estimation methods are required. If the parameters are varying at a
rate similar to that of the rate of another system variable, then that
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