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a b s t r a c t

Sophisticated methods for uncertainty quantification have been proposed for overcoming the pitfalls of
simple statistical inference in hydrology. The implementation of such methods is conceptually and
computationally challenging, however, especially for large-scale models. Here, we explore whether there
are circumstances in which simple approaches, such as least squares, produce comparably accurate and
reliable predictions. We do so using three case studies, with two involving a small sewer catchment with
limited calibration data, and one an agricultural river basin with rich calibration data. We also review
additional published case studies. We find that least squares performs similarly to more sophisticated
approaches such as a Bayesian autoregressive error model in terms of both accuracy and reliability if
calibration periods are long or if the input data and the model have minimal bias. Overall, we find that,
when mindfully applied, simple statistical methods such as LS can still be useful for uncertainty
quantification.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Statistical model calibration and uncertainty quantification (UQ)
have recently received substantial attention in surface hydrology
and water quality research. Several studies have stressed the
importance of more realistically describing the behavior of cali-
bration errors, a.k.a. residuals, and thus moving beyond least
squares (LS) calibration assumption of independent and normally
distributed residuals (e.g., Reichert and Mieleitner, 2009; Renard
et al., 2011; Honti et al., 2013). In particular, it has been suggested
that, by using error models that explicitly consider the hetero-
scedasticity (i.e. non-constant variance) and autocorrelation of the
calibration errors, parameter estimation and subsequent predictive
uncertainty assessment can be improved in a relatively straight-
forward manner (Sorooshian and Dracup, 1980; Yang et al., 2007b;

Schoups and Vrugt, 2010; Del Giudice et al., 2015a). However, while
such sophisticated approaches have been shown to be helpful in
the specific situations where they were tested, this does not
necessarily imply that simpler statistical techniques such as least
squares calibration are never useful. Therefore, there is a critical
knowledge gap in hydrologic and environmental modeling
regarding when simple calibration approaches are acceptable
versus when more sophisticated ones are needed. Understanding
the domain of applicability of simple least squares along with its
limitations is essential. Indeed, we argue that the presupposition
that statistical inference always has to be conducted with concep-
tually and computationally burdensome methods might be
inducing modelers to eschew UQ altogether (e.g., Bosch et al., 2011;
Coutu et al., 2012; Razavi and Tolson, 2013) or use “pseudo-statis-
tical” methods with unclear probabilistic interpretation (e.g., Freni
et al., 2009; Beven and Smith, 2015). In the context of predictive UQ,
we therefore address an important yet so far unanswered question:
Are there cases in which a simple method such as least squares
yields predictions with precision and accuracy that are on par with
state-of-the-art approaches that account for error autocorrelation
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and parameter uncertainty? If so, are there features that make a
particular case study a better candidate for simple approaches to
uncertainty quantification? Here, we contrast three case studies
with different degrees of data availability andmodel discrepancy to
answer these questions. By also drawing on published hydrologic
and water quality case studies we argue that LS can be used, pro-
vided that some criteria are met and that the method is applied
with some caution. We additionally shed light upon the specific
cases inwhichmore sophisticated statistical methods are needed to
deliver useful parameter estimates and uncertainty intervals.

2. Study areas and models

We investigate the suitability of LS calibration and subsequent
uncertainty propagation in two catchments that differ substantially
in terms of geographic domain, availability of calibration data,
quality of input data, type and complexity of hydrological model,
variables predicted, and types of systematic errors. For one catch-
ment we consider two cases, one with low systematic deviations
between model results and output data and one with high bias
induced by forcing the model with less accurate input estimates. In
each of the three cases we split the recorded time series into a
calibration period, where output data are used for parameter esti-
mation, and a validation period, where output data are used to
corroborate model predictive abilities.

2.1. Case studies 1 (CS1 and CS1’): watershed with limited data

CS1 and CS10 involve the same small, partially combined sewer
network located in Adliswil, Zurich Canton, Switzerland (Fig. S1).
The watershed has an area of 28.6 ha, only a fraction of which
contributes to the sewer outflow. The effective contributing area of
the watershed is indeed a calibration parameter (see below). The
area is characterized by medium density residential development
and a slope of about 8.7%. The site was monitored in 2013 to
quantify the occurrence of sewer overflows and to understand the
impact of the location of precipitation measurements on discharge
predictions. For calibration we use a discharge Q [l/s] time series of
an event including 97 observations recorded every 4min (Fig. 1).
This calibration period includes two storm events of duration
greater than the catchment response time, which is on the order of
minutes. For validationwe use a subsequent event that occurred 80
days later and included 179 observations. Such short time series are
typical in hydrological modeling of urban catchments (e.g., Freni
et al., 2009; Coutu et al., 2012). For CS1, input data were recorded
by a pluviometer from the Swiss meteorological office1 located
circa 7.5 km Northeast of the catchment (Fig. S1). The second
version of this case study, CS1’, uses more accurate input obtained
by averaging data from two pluviometers located within the
catchment area itself. A comparison of the precipitation records
from these pluviometers reveals that the precipitation input data
used in CS1 has substantial systematic errors (Fig. S3). The time
series of sewer runoff at the outlet of the catchment is modeled
using a lumped linear reservoir model with a harmonic function
describing the wastewater oscillations (see Del Giudice et al. (2016)
for further details about the catchment and the model). In this
investigation, we calibrate the three model parameters related to
rainfall-runoff, namely A [m2], the area contributing to the storm-
water outflow, k [hr], the mean residence time in the virtual
reservoir representing the catchment, and xgw [l/s], the baseflow.

2.2. Case study 2 (CS2): watershed with abundant data

CS2 is the River Raisin basin, which has an area of 2784 km2 and
is primarily rural (72%) and forested (16%). The variables of interest
are river discharge Q [m3/s] and soluble reactive phosphorus load
SRP, [kg/d]. The calibration period contains 1095 discharge obser-
vations and 1095 SRP load observations at daily resolution (Fig. 3).
This calibration period includes numerous storm events of duration
longer than the catchment response time, which is on the order of
days. The validation period immediately follows the calibration
period and includes 366 discharge observations and 335 SRP load
observations. The watershed dynamics are simulated using the Soil
and Water Assessment Tool (SWAT) (Arnold et al., 1998). SWAT is a
hydrologic transport model that operates at catchment scale. It is
both more complex, due to its more explicit representation of
spatial heterogeneity and watershed processes, and more
computationally-demanding than the simple reservoir model used
in CS1 and CS1’. The River Raisin basin and model are well studied
in the context of furthering the understanding of the dynamics of
nutrient loading from agricultural areas (Bosch et al., 2011). The
SWAT model used here includes all the same process parameteri-
zations, inputs, andmanagement details as in Muenich et al. (2017).
The model is driven by daily precipitation and temperature ob-
servations from nine NOAA GHCN land surface stations (Menne
et al., 2012), most of which are located within the catchment area
(Fig. S2). Daily discharge and SRP observations used for calibration
and validation are obtained from Heidelberg University NCWQR
(2015). In the current application, we calibrate three model pa-
rameters: CN2 [-], the runoff curve number for moisture condition
II, SMTMP [�C], the snow melt base temperature, and PHOSKD [-],
the phosphorus soil partitioning coefficient. These parameters are
selected because they are primary controls on three key processes,
namely rainfall-runoff, snowmelt, and biochemical reaction, and
the output variables of interest are sensitive to them.

3. Methods

3.1. Simple method: frequentist least squares (LS)

The least squares method, LS, is a classic statistical approach for
calibrating model parameters, estimating model output errors, and
thus producing prediction intervals (Wooldridge, 2015). LS is
generally adopted as the basic technique against which new
methods for uncertainty quantification are tested (Sorooshian and
Dracup, 1980; Schoups and Vrugt, 2010; Renard et al., 2011; Honti
et al., 2013; Del Giudice et al., 2016). The simplest application of
LS is within a frequentist framework, in which model parameters
are assumed to have one true yet unknown value. Consequently,
model parameters are estimated by minimizing an objective
function and neither prior nor posterior model parameter un-
certainties are explicitly considered. Because model residuals in
hydrology are typically heteroskedastic and non-normal (Wang
et al., 2012; Del Giudice et al., 2013), here we apply LS after hav-
ing transformed the observed yo and modeled y output using a
non-linear monotonic function g (see Supporting Material). The
objective function used for calibration is the sum of the squares of
the errors:

SSE ¼
Xn

ð~yo � ~yÞ2 (1)

where tilde represents the transformed output and n is the number
of data points in the calibration dataset, i.e. the length of yo, a vector
possibly including multiple outputs. Numerically, we use an
adaptive Markov chain Monte Carlo algorithm (as in Del Giudice1 www.hw.zh.ch/hochwasser/foto/DB%20SMA.pdf.

D. Del Giudice et al. / Environmental Modelling & Software 105 (2018) 286e295 287

http://www.hw.zh.ch/hochwasser/foto/DB%20SMA.pdf


Download English Version:

https://daneshyari.com/en/article/6962050

Download Persian Version:

https://daneshyari.com/article/6962050

Daneshyari.com

https://daneshyari.com/en/article/6962050
https://daneshyari.com/article/6962050
https://daneshyari.com

