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Simplicity and flexibility of meta-heuristic optimization algorithms have attracted lots of attention in the
field of optimization. Different optimization methods, however, hold algorithm-specific strengths and
limitations, and selecting the best-performing algorithm for a specific problem is a tedious task. We
introduce a new hybrid optimization framework, entitled Shuffled Complex-Self Adaptive Hybrid Evo-
Lution (SC-SAHEL), which combines the strengths of different evolutionary algorithms (EAs) in a parallel
computing scheme. SC-SAHEL explores performance of different EAs, such as the capability to escape
local attractions, speed, convergence, etc., during population evolution as each individual EA suits
differently to various response surfaces. The SC-SAHEL algorithm is benchmarked over 29 conceptual test
functions, and a real-world hydropower reservoir model case study. Results show that the hybrid SC-
SAHEL algorithm is rigorous and effective in finding global optimum for a majority of test cases, and
that it is computationally efficient in comparison to algorithms with individual EA.
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Software availability

Name of software: SC-SAHEL

Developer: Matin Rahnamay Naeini

Contact address: rahnamam®@uci.edu

Program language: MATLAB

Year first available: 2018

Availability: Freely available to public at http://chrs.web.uci.edu/
resources.php and MathWorks website

Software requirements: MATLAB 9.0

1. Introduction

Meta-Heuristic optimization algorithms have gained a great
deal of attention in science and engineering (Blum and Roli, 2003;
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Boussaid et al,, 2013; Lee and Geem, 2005; Maier et al., 2014;
Nicklow et al., 2010; Reed et al., 2013). Simplicity and flexibility of
these algorithms, along with their robustness make them attractive
tools for solving optimization problems (Coello et al., 2007; Lee and
Geem, 2005). Many of the meta-heuristic algorithms are inspired
by a physical phenomenon, such as animals social and foraging
behavior and natural selection. For example, Simulated Annealing
(Kirkpatrick et al., 1983), Big Bang-Big Crunch (Erol and Eksin,
2006), Gravitational Search Algorithm (Rashedi et al., 2009),
Charged System Search (Kaveh and Talatahari, 2010) are inspired by
various physical phenomena. Ant Colony Optimization (Dorigo
et al.,, 1996), Particle Swarm Optimization (Kennedy, 2010), Bat-
inspired Algorithm (Yang, 2010), Firefly Algorithm (Yang, 2009),
Dolphin Echolocation (Kaveh and Farhoudi, 2013), Grey Wolf
Optimizer (Mirjalili et al., 2014), Bacterial Foraging (Passino, 2002),
Genetic Algorithm (Golberg, 1989; Holland, 1992), and Differential
Evolution (Storn and Price, 1997) are examples of algorithms
inspired by animal's social and foraging behavior, and the natural
selection mechanism of Darwin's evolution theorem. According to
the No-Free-Lunch (NFL) (Wolpert and Macready, 1997) theorem,
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none of these algorithms are consistently superior to others over a
variety of problems, although some of them may outperform others
on a certain type of optimization problem.

The NFL theorem has been a source of motivation for developing
optimization algorithms (Mirjalili et al., 2014; Woodruff et al.,
2013). It has encouraged scientists and researchers to combine
the strengths of different algorithms and devise more robust and
efficient optimization algorithms that suit a broad class of problems
(Qin and Suganthan, 2005; Vrugt and Robinson, 2007; Vrugt et al.,
2009; Hadka and Reed, 2013; Sadegh et al., 2017). These efforts led
to emergence of multi-method and self-adaptive optimization al-
gorithms such as Self-adaptive DE algorithm (SaDE) (Qin and
Suganthan, 2005), A Multialgorithm Genetically Adaptive Method
for Single Objective Optimization (AMALGAM-SO) (Vrugt and
Robinson, 2007; Vrugt et al., 2009) and Borg (Hadka and Reed,
2013). They all regularly update the search mechanism during the
course of optimization according to the information obtained from
the response surface.

Here, we propose a new self-adaptive hybrid optimization
framework, entitled Shuffled Complex-Self Adaptive Hybrid Evo-
Lution (SC-SAHEL). The SC-SAHEL framework employs multiple
Evolutionary Algorithms (EAs) as search cores, and enables
competition among different algorithms as optimization run pro-
gresses. The proposed framework differs from other multi-method
algorithms as it grants independent evolution of population by
each EA. In this framework, population is partitioned into equally
sized groups, so-called complexes; each assigned to different EAs.
Number of complexes assigned to each EA is regularly updated
according to their performance. In general, the newly developed
framework has two main characteristics. First, all the EAs evolve
population in a parallel structure. Second, each participating EA
works independent of other EAs. The architecture of SC-SAHEL is
inspired by the concept of the Shuffled Complex Evolution algo-
rithm - University of Arizona (SCE-UA) (Duan et al., 1992). The SCE-
UA algorithm is a population-evolution based algorithm (Madsen,
2003), which evolves individuals by partitioning population into
different complexes. The complexes are evolved for a specific
number of iterations independent of other complexes, and then are
forced to shuffle.

The SCE-UA framework employs Nelder-Mead simplex (Nelder
and Mead, 1965) technique along with the concept of controlled
random search (Price, 1987), clustering (Kan and Timmer, 1987),
competitive evolution (Holland, 1975) and complex shuffling (Duan
et al.,, 1993) to offer a global optimization strategy. By employing
these techniques, the SCE-UA algorithm provides a robust optimi-
zation framework and has shown numerically to be competitive
and efficient comparing to other algorithms, such as GA, for cali-
brating rainfall-runoff models (Beven, 2011; Gan and Biftu, 1996;
Wagener et al., 2004; Wang et al., 2010). The SCE-UA algorithm has
been widely used in water resources management (Barati et al.,
2014; Eckhardt and Arnold, 2001, K. Ajami et al., 2004; Lin et al.,
2006; Liong and Atiquzzaman, 2004; Madsen, 2000; Sorooshian
et al., 1993; Toth et al., 2000; Yang et al., 2015; Yapo et al., 1996),
as well as other fields of study, such as pyrolysis modeling (Ding
et al., 2016; Hasalova et al., 2016) and Artificial Intelligence (Yang
et al.,, 2017).

Application of the SCE-UA is not limited to solving single
objective optimization problems. The Multi-Objective Complex
evolution, University of Arizona (MOCOM-UA), is an extension of
the SCE-UA for solving multi-objective problems (Boyle et al., 2000;
Yapo et al., 1998). Besides, the SCE-UA architecture has been used to
develop Markov Chain Monte Carlo (MCMC) sampling, named
Shuffled Complex Evolution Metropolis algorithm (SCEM-UA) and
the Multi-Objective Shuffled Complex Evolution Metropolis
(MOSCEM) to infer posterior parameter distributions of hydrologic

models (Vrugt et al. 20033, 2003b). The Metropolis scheme is used
as the search kernel in the SCEM-UA and MOSCEM-UA (Chu et al.,
2010; Vrugt et al. 2003a, 2003b). There is also an enhanced
version of SCE-UA, which is developed by Chu et al. (2011) entitled
the Shuffled Complex strategy with Principle Component Analysis,
developed at the University of California, Irvine (SP-UCI). Chu et al.
(2011) found that the SCE-UA algorithm may not converge to the
best solution on high-dimensional problems due to “population
degeneration” phenomenon. The “population degeneration” refers
to the situation when the search particles span a lower dimension
space than the original search space (Chu et al., 2010), which causes
the search algorithm to fail in finding the global optimum. To
address this issue, the SP-UCI algorithm employs Principle
Component Analysis (PCA) in order to find and restore the missing
dimensions during the course of search (Chu et al., 2011).

Both SCE-UA and SP-UCI start the evolution process by gener-
ating a population within the feasible parameters space. Then,
population is partitioned into different complexes, and each com-
plex is evolved independently. Each member of the complex has
the potential to contribute to offspring in the evolution process. In
each evolution step, more than two parents may contribute to
generating offspring. To make the evolution process competitive, a
triangular probability function is used to select parents. As a result,
the fittest individuals will have a higher chance of being selected.
Each complex is evolved for a specific number of iterations, and
then complexes are shuffled to globally share the information
attained by individuals during the search.

The Competitive Complex Evolution (CCE) and Modified
Competitive Complex Evolution (MCCE) are the search cores of the
SCE-UA and SP-UCI algorithm, respectively. The CCE and MCCE
evolutionary processes are developed based on Nelder-Mead
(Nelder and Mead, 1965) method with some modification. The
evolution process in the SCE-UA is not limited to these algorithms.
In fact, several studies have incorporated different EAs into the
structure of the SCE-UA algorithm. For example, the Frog Leaping
(FL) is developed by adapting Particle Swarm Optimization (PSO)
algorithm to the SCE-UA structure for solving discrete problems
(Eusulff et al., 2006; Eusuff and Lansey, 2003). Mariani et al. (2011)
proposed an SCE-UA algorithm which employs DE for evolving the
complexes. These studies revealed the flexibility of the SCE-UA in
combination with other types of EAs; however, the potential of
combining different algorithms into a hybrid shuffled complex
scheme has not been investigated.

The unique structure of the SCE-UA algorithm along with the
flexibility of the algorithm for using different EAs, motivated us to
use the SCE-UA as the cornerstone of the SC-SAHEL framework. The
SC-SAHEL algorithm employs multiple EAs for evolving the popu-
lation in a similar structure as that of the SCE-UA, with the goal of
selecting the most suitable search algorithm at each optimization
step. On the one hand, some EAs are more capable of visiting the
new regions of the search space and exploring the problem space,
and hence are particularly suitable at the beginning of the opti-
mization (Olorunda and Engelbrecht, 2008). On the other hand,
some EAs are more capable of searching within the visited regions
of the search space, and hence boosting the convergence process
after finding the region of interest (Mirjalili and Hashim, 2010).
Balancing between these two steps, which are referred to as
exploration and exploitation (Moeini and Afshar, 2009), is a chal-
lenging task in stochastic optimization methods (Crepinsek et al.,
2013). The SC-SAHEL algorithm maintains a balance between
exploration and exploitation phases by evaluating the performance
of participating EAs at each optimization step. EAs contribute to the
population evolution according to their performance in previous
steps. The algorithms' performance is evaluated by comparing the
evolved complexes before and after evolution. In this process, the
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