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a b s t r a c t

This paper presents MULESME, a software designed for the systematic mapping of surface soil moisture
using Sentinel-1 SAR data. MULESME implements a multi-temporal algorithm that uses time series of
Sentinel-1 data and ancillary data, such as a plant water content map, as inputs. A secondary software
module generates the plant water content map from optical data provided by Landsat-8, or Sentinel-2, or
MODIS. Each output of MULESME includes another map showing the level of uncertainty of the soil
moisture estimates. MULESME was tested by using both synthetic and actual data. The results of the tests
showed that root mean square error is in the range between 0.03m3/m3 (synthetic data) and 0.06m3/m3

(actual data) for bare soil. The accuracy decreases in the presence of vegetation (root mean square in the
range 0.08e0.12m3/m3), as expected.

© 2017 Elsevier Ltd. All rights reserved.

Software availability

Name of software: MULESME (MUltitemporal LEast Square
Moisture Estimator)

Developer: Luca Pulvirenti, CIMA Research Foundation, via A.
Magliotto 2, 17100 Savona, Italy (luca.pulvirenti@
cimafoundation.org)

First year available: 2016
Programming language: IDL
Required hardware: 16 GB RAM minimum
Supported systems: Windows, Linux
Required software: IDL/ENVI. MULESME was designed and tested

using the ENVI 5.4.1 version. The MODIS Conversion
Toolkit must be used to process MODIS data, if used. The
freely available ESA Sentinel Application Platform

(SNAP) must be used for the pre-processing of Sentinel-
1 data

Availability: mail to luca.pulvirenti@cimafoundation.org to request
the IDL/ENVI source code of MULESME. A set of test data
can be provided too

License: ENVI þ IDL commercial license (Harris Geospatial)

1. Introduction

The role of soil moisture (SM) as a key variable for the charac-
terization of the global climate is widely recognized within the
international scientific community. Surface SM controls the parti-
tioning of available energy at the ground surface into latent and
sensible heat exchange through evaporation and transpiration
processes (Anagnostopoulos et al., 2017; Petropoulos and
McCalmont, 2017). Furthermore, the SM content of the root zone
regulates the redistribution of precipitation into infiltration, runoff,
storage in the root zone and percolation into deeper ground water
storage (Sheikh et al., 2009).

* Corresponding author. Via Armando Magliotto 2, 17100 Savona, Italy.
E-mail address: luca.pulvirenti@cimafoundation.org (L. Pulvirenti).

Contents lists available at ScienceDirect

Environmental Modelling & Software

journal homepage: www.elsevier .com/locate/envsoft

https://doi.org/10.1016/j.envsoft.2017.12.022
1364-8152/© 2017 Elsevier Ltd. All rights reserved.

Environmental Modelling & Software 102 (2018) 13e28

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
mailto:luca.pulvirenti@cimafoundation.org
mailto:luca.pulvirenti@cimafoundation.org
mailto:luca.pulvirenti@cimafoundation.org
mailto:luca.pulvirenti@cimafoundation.org
http://crossmark.crossref.org/dialog/?doi=10.1016/j.envsoft.2017.12.022&domain=pdf
www.sciencedirect.com/science/journal/13648152
http://www.elsevier.com/locate/envsoft
https://doi.org/10.1016/j.envsoft.2017.12.022
https://doi.org/10.1016/j.envsoft.2017.12.022
https://doi.org/10.1016/j.envsoft.2017.12.022


Coarse resolution (25e50 km) SM estimates, provided by satel-
lite microwave radiometers or scatterometers, are useful in support
of numerical weather prediction, climate monitoring and flood
forecasting (Brocca et al., 2017; Hornacek et al., 2012). High-
resolution (0.1e1 km) products, obtained from Synthetic Aperture
Radar (SAR) data, can be useful even for applications such as
monitoring of agricultural yield at field level, or irrigation man-
agement (Hornacek et al., 2012). Although C-band is not the ideal
frequency for soil moisture retrieval applications, being also sen-
sitive to soil roughness and the presence of vegetation (Fascetti
et al., 2016), the availability of six-day repeat Sentinel-1 (S1) C-
band SAR data currently represents the only opportunity to sys-
tematically produce surface (depth of ~5 cm) SM maps at high
spatial resolution.

Recent literature studies demonstrated that S1 data can be
suitable for SM mapping (Balenzano et al., 2012; Hornacek et al.,
2012; Paloscia et al., 2013; Pierdicca et al., 2014). Nonetheless, the
systematic use of S1 data for providing end users with an opera-
tional SM mapping service poses two problems. The first one
regards the accuracy of SM estimates, because SM retrieval from
SAR data is an ill-posed problem. In fact, even considering the most
favorable condition, i.e., a bare terrain, SAR measurements are
sensitive not only to SM, but also to soil roughness (Marzahn et al.,
2012) and are also very noisy because of the speckle noise char-
acteristic of any SAR image. This problem was dealt with in the
literature by developing multi-temporal retrieval algorithms
(Balenzano et al., 2011; Hornacek et al., 2012; Kim et al., 2012;
Pierdicca et al., 2010), which assume that the temporal scale of
variation of soil roughness is considerably slower than that of SM.
Hence, if a dense time-series of SAR data is available, as expected
using S1, short term changes in the backscattering coefficient s0

(that represents the SAR measurement) are basically related to SM
variations (Balenzano et al., 2011). The situation is further compli-
cated by the dependence of s0 on biomass parameters, as well as
plant structure and geometry, if vegetation is present. To correct for
the vegetation influence on s0, simple semi-empirical models, such
as the Water Cloud model (Attema and Ulaby, 1978), using few
“bulk” parameters such as the plant water content W, are
commonly used in the literature. These models can be easily
inverted to discriminate the soil contribution to the SAR mea-
surement from that related to vegetation, but require reliable data
about the bulk parameters. Various studies demonstrated the po-
tential of retrieving W from optical images, in particular using
semi-empirical relationships between W and the normalized dif-
ference vegetation index (NDVI) (e.g. Jackson et al., 1999; Liu and
Shi, 2016; Pierdicca et al., 2010). However, it must be underlined
that tackling the effects of vegetation is still a challenge for any
estimation approach, because semi-empirical models may lack of
generality. In the literature, accuracies in the order of 0.04e0.13m3/
m3 (Root Mean Square Error: RMSE) are reported (e.g. Hajnsek
et al., 2009) for SM retrieval from SAR, but these scores often
refer to specific test sites and/or case studies in which multi-
frequency or fully polarimetric data (see section 4.2) were avail-
able. Using S1 data at large (e.g. national) scale, even higher RMSE
can be expected, especially if SAR observations are performed un-
der dense vegetation conditions, so that the need to improve the
quality of SM estimates, for instance by assimilating them into a
hydrological model (e.g. Brocca et al., 2012; Cenci et al., 2016a),
clearly emerges. It should also be pointed out that in areas whereW
is very high, as well as in forested and urban areas and in areas with
complex topography, SM retrieval from SAR is unfeasible, so that
the corresponding maps have gaps (i.e., masked areas).

The second problem connected to the systematic use of S1 data
for designing a SM mapping service, is related to the more general
need of developing software tools that allow the community to

really take advantage of the progresses achieved in Earth Obser-
vation (EO) technology. Examples of these tools are those devel-
oped by Petropoulos et al. (2013), for the pre-processing of the
Spinning Enhanced Visible and Infrared Imager (SEVIRI) data,
Keramitsoglou et al. (2006), for SAR-based oil spill detection, Boni
et al. (2016) and Martinis et al. (2015), to produce SAR-based
maps of flooded areas. For what concerns SM retrieval, the need
of EO-based software tools was recently highlighted by Srivastava
(2017) and Petropoulos et al. (2015). Tischler et al. (2007)
designed a GIS tool to integrate SM predictions from a land sur-
face model with EO measurements.

This paper presents MULESME (MUltitemporal LEast Square
Moisture Estimator), a software implementing an automated pro-
cessing chain designed for an operational SAR-based service whose
aim is the production of daily high-resolution (~500� 500m2) SM
maps at national (Italian) scale. The paper is focused on the design
of the software and does not propose a new SM retrieval algorithm.
Note that an operational SAR-based SM mapping service does not
exist to date and this prevents potential users from fully exploiting
the advances achieved in retrieving SM (or at least its variations)
from short revisit S1 data. Hence, a paper presenting a software
able to implement this kind of service by systematically producing
an updated high resolution SM map as soon as new S1 images are
available, represents a novel contribution to the literature. Besides
hydrologists and meteorologists, potential users interested in this
software may be authorities or government agencies at national
scale to monitor either antecedent soil wetness conditions in case
of flood alert issues (Teng et al., 2017), or water resources con-
sumption in areas affected by droughts. Even agricultural managers
could be interested in a SM mapping service in order to get timely
information about water requirements of the soil (Flores-Carrillo
et al., 2017).

To our knowledge, a high-resolution SM mapping service was
never proposed in the literature, as previously pointed out. A near-
real-time SM distribution service is implemented by the European
Organization for the Exploitation of Meteorological Satellites
(EUMETSAT) using low resolution Advanced Scatterometer (ASCAT)
data (Wagner et al., 2013). The European Space Agency (ESA)
recently released the Soil Moisture Ocean Salinity (SMOS) Level 2
Soil Moisture Near Real Time Neural Network data product
(Rodriguez-Fernandez et al., 2015); even in this case the spatial
resolution is in the order of tens of km.

MULESME uses, as input data, time series of S1 Interferometric
Wide Swath products (see section 2.1), as well as ancillary data,
namely a land cover map, topographic slope information, local
incidence angle maps and a map representing the state of the
vegetation. The latter is generated by a secondary processor that
uses optical data (Landsat-8, Sentinel-2, MODIS) as inputs.

The software was implemented using the IDL language and the
ENVI routines that can be launched by means of specific IDL in-
structions. It was developed within the framework of the MIDA
(Italian acronym of maps of soil moisture for hydrologic data
assimilation) project, funded by the Italian Space Agency (ASI) and
the WASDI (Web based ASI Spatial Data Infrastructure) project,
funded by the European Space Agency (ESA) on behalf of ASI. In
particular, the software was firstly designed in the framework of
the MIDA project, whose aim is the generation of SMmaps through
the assimilation of S1 derived estimates into a hydrological model.
In the near future, MULESME will be installed in the WASDI plat-
form, connected to the Italian Sentinel Collaborative Ground
Segment (Coll-It), in order to exploit the Coll-It storage capability
and its computing resources, without the need of moving big
amounts of data towards the processors.

Section 2 gives an overview on Sentinel-1 data and describes the
algorithms that are implemented in MULESME to retrieve SM,
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