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a b s t r a c t

Modeling and identification of high dimensional systems, involving signals with many components,
poses severe challenges to off-the-shelf techniques for system identification. This is particularly so when
relatively small data sets, as compared to the number signal components, have to be used. It is often the
case that each component of the measured signal can be described in terms of a few other measured
variables and these dependences can be encoded in a graphical way via so called ‘‘Dynamic Bayesian
Networks’’. The problem of finding the interconnection structure as well as estimating the dynamic
models can be posed as a system identification problem which involves variable selection. While this
variable selection could be performed via standard selection techniques, computational complexity may
however be a critical issue, being combinatorial in the number of inputs and outputs. In this paper we
introduce two new nonparametric techniques which borrow ideas from a recently introduced kernel
estimator called ‘‘stable-spline’’ as well as from sparsity inducing priors which use ℓ1-type penalties.
Numerical experiments regarding estimation of large scale sparse (ARMAX) models show that this
technique provides a definite advantage over a group LAR algorithm and state-of-the-art parametric
identification techniques based on prediction error minimization.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Black-box identification approaches are widely used to learn
dynamicmodels froma finite set of input/output data (Ljung, 1999;
Soderstrom & Stoica, 1989). In particular, in this paper we fo-
cus on the identification of large scale linear systems that involve
a wide amount of variables and find important applications in
many different domains such as chemical engineering, economet-
rics/finance, computer vision, systemsbiology, social networks and
so on (Banbura, Giannone, & Reichlin, 2008; Kolaczyk, 2009; Mo-
hammadpour & Grigoriadis, 2010).

In engineering applications, when data are collected from a
physical plant, it is often the case that there is an underlying in-
terconnection structure; for instance the overall system could be
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the interconnection via cascade, parallel, feedback and combina-
tions thereof ofmanydynamical systems. In this scenario any given
variable may be directly related to only a few other variables. This
sort of structure, which may be self-evident in certain engineer-
ing domains where the system has been designed via intercon-
nection, may also pop up when modeling phenomena involving a
large number of variables. These interconnections, such as parallel,
series or feedback, may be intrinsic (e.g. in economic and social
‘‘systems’’) without being related to ‘‘physical’’ control loops. One
convenient and popular way of graphically describing these rela-
tions is via so called graphical models (Lauritzen, 1996).

In the static Gaussian case, the ‘‘relation’’ between variables
can be expressed in terms of conditional independence conditions
between subsets of them, see e.g. Dempster (1972). Estimation of
sparse graphical models has been the subject of intense research
which is impossible to survey here; we only point the reader to
the early paper (Meinshausen & Bühlmann, 2006) which proposes
using the Lasso for this purpose. In the dynamic case, i.e. when
observed data are trajectories of (possibly stationary) stochastic
processes, one may consider several notions of conditional
independence which can be encoded via the so-called time series
correlation (TSC) graphs, Granger causality graphs and ‘‘partial
correlation’’ graphs, see Dahlhaus and Eichler (2003) for details.

When the number of measured variables is very large and
possibly larger than the number of data available (i.e. the number
of ‘‘samples’’ available for statistical inference), even though there
is no ‘‘physical’’ underlying network, constructing meaningful
models which are useful for prediction/monitoring/intepretation
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requires trading off model complexity vs. fit. In a parametric
setup this complexity depends on the number of parameters
which is related to both the complexity of each ‘‘subsystem’’
(e.g. measured via its order) as well as to their number (i.e. the
number of dynamical systems which are ‘‘non zero’’). Estimation
problems involving variable selection, which can be also framed as
determining connectivity in a suitable graphical description, have
been recently studied in the literature, see for instance Materassi
and Innocenti (2010), Materassi and Salapaka (2010), Napoletani
and Sauer (2008), Timme (2007) and references therein. In the
paper Timme (2007) coupled nonlinear oscillators (Kuramoto
type) are considered where the coupling strengths are to be
estimated; in Napoletani and Sauer (2008) nonlinear dynamics
are allowed and the attention is restricted to the linear term2 in
the state update equation, equivalent to a vector autoregressive
(VAR) model of order one. In both cases it is assumed that the
entire state space is measurable and an ℓ1-penalized regression
problem is solved for estimating the coupling strenghts/linear
approximations. Sparse models under ‘‘smoothing’’ conditional
independence relations, encoded by ‘‘partial correlation’’ graphs
or equivalently via zeros in the inverse spectrum Brillinger (1981),
have been recently studied in the literature. For instance, Songsiri
and Vandeberghe (2010) considers VAR models and ℓ1-type
penalized regression while Avventi, Lindquist, and Wahlberg
(2010) considers ARMAmodels; in Materassi and Innocenti (2010)
and Materassi and Salapaka (2010) a methodology based on
smoothing a la Wiener is proposed, where interconnections are
found by putting a threshold on the estimated transfer functions.

In this work we shall focus on stationary stochastic Gaussian
processes described via Granger causality concepts, where condi-
tional independence conditions encode the fact that the predic-
tion of (the future of) one variable (which we shall call ‘‘output
variable’’) may require only the past history of few other variables
(whichwe shall call ‘‘inputs’’) plus possibly its ownpast. This can be
represented with a graphwhere nodes are variables and (directed)
edges are (non zero) transfer functions, self-loops encoding depen-
dence on the ‘‘output’’ own past.3 The concept of Granger causality
is, in fact, the most ‘‘natural’’ description in the context of causal
control systems since, under rather mild conditions (Gevers & An-
derson, 1982), the model obtained in this way is the unique inter-
nally stable feedback interconnection which describes the second
order statistics of the stationary process under study. In general
both the dynamical systems and the interconnection structure are
unknown and have to be inferred from data. Without loss of gen-
erality we shall address the problem of modeling the relation be-
tween one node in this graph (the ‘‘output’’ variable) and all the
othermeasured variables (the ‘‘inputs’’). Beyond linearity, we shall
notmake any assumption on each subsystem (e.g. no knowledge of
systemorders). Our focus is both on finding the underlying connec-
tion structure (if any) as well as obtaining reliable and easily inter-
pretable models which can be used, e.g. for prediction/monitoring
etc.

Note that one may not be interested at all in building a
complete ‘‘network of dependences’’ for the joint process (u, y)
but just in modeling an ‘‘output’’ y as a function of the inputs
u. This of course involves selecting the most relevant variables
and therefore the identification procedure should be sparsity-
favoring. Such sparsity principle permeates many well known
techniques in machine learning and signal processing such as
feature selection, selective shrinkage and compressed sensing

2 Thinking of a first order Taylor expansion around the trajectory.
3 In the language of classical System Identification, dependence of the predictor

on the past outputs will result in ARMAX models, lack of dependence in Output
Error (OE) models.

(Donoho, 2006; Hastie & Tibshirani, 1990). Recently proposed
estimation techniques which induce sparse models include the
well known Lasso (Tibshirani, 1996) and Least Angle Regression
(LAR) (Efron, Hastie, Johnstone, & Tibshirani, 2004) where variable
selection is performed exploiting the ℓ1 norm. Extensions of this
procedure for group selection include Group Lasso and Group
LAR (GLAR) (Yuan & Lin, 2006) where the sum of the Euclidean
norms of each group (in place of the absolute value of the single
components) is used. Theoretical analysis of these approaches and
connections with the multiple kernel learning problem can be
found in Bach (2008), Micchelli and Pontil (2005), Zou (2006) and
Zhao and Yu (2006). We warn the reader that one should not take
‘‘sparse’’ estimators as panacea; it is for instance shown in Leeb and
Pötscher (2008) that sparse estimators which possess some sort of
‘‘Oracle property’’ (Fan & Li, 2001) have unbounded (normalized)
maximal risk as the sample size increases.

Most of the work available in the literature addresses the
‘‘static’’ (i.e. with no ‘‘time-dependence’’) scenariowhile very little,
with some exception (Hsu, Hung, & Chang, 2008; Wang, Li, &
Tsai, 2007), can be found regarding the identification of dynamic
systems.

In this paper we adopt a Bayesian point of view to prediction
and identification of sparse linear systems. Our starting point
is the new identification paradigm developed in Pillonetto and
De Nicolao (2010) that relies on nonparametric estimation of
impulse responses (see also Pillonetto, Chiuso, and De Nicolao
(2011) for extensions to predictor estimation). Expanding on our
recent works Chiuso and Pillonetto (2010a,b) we extend this
nonparametric paradigm to the design of optimal linear predictors
so as to jointly perform identification and variable selection.
Without loss of generality, analysis is restricted to MISO systems,
where the variable to be predicted is called ‘‘output variable’’ and
all the other (say m − 1) available variables are called ‘‘inputs’’.
In this way we interpret the predictor as a system with m inputs
(given by the past outputs and inputs) and one output (output
predictions).

We consider two approaches: the first, which we shall call
Stable-Spline GLAR (SSGLAR), is based on the GLAR algorithm in
Yuan and Lin (2006) and can be seen as a variation of the so-
called ‘‘elastic net’’ (Zou & Hastie, 2005); the second, which we
shall call Stable-Spline Exponential Hyperprior (SSEH) assigns an
exponential hierarchical hyperpriorwith a commonhypervariance
to the scale factors. This second approach has connections with
the so-called Relevance Vector Machine in Tipping (2001). The
hierarchical hyperprior favors sparsity through an ℓ1 penalty on
kernel hyperparameters. Inducing sparsity by hyperpriors is an
important feature of our second approach. In fact, this permits to
obtain the marginal posterior of the hyperparameters in closed
form and hence also their estimates in a robust way. Once the
kernels are selected, the impulse responses are obtained in closed
form via the Representer Theorem (Aronszajn, 1950). As we shall
see, however, SSEH requires solving a non-linear optimization
problem which may benefit from a ‘‘good’’ initialization. We shall
argue that a forward-selection type of procedure provides a robust
and computationally attractive way of initializing SSEH.

Numerical experiments involving sparse ARMAX systems show
that this approach provides a definite advantage over both the
standard GLAR (applied to ARX models) and PEM (equipped with
AIC or BIC) in terms of predictive capability on new output data
while also effectively capturing the ‘‘structural’’ properties of
the dynamic network, i.e. being able to identify correctly, with
high probability, the absence of dynamic links between certain
variables.

The paper is organized as follows: Section 2 contains the
problem formulation while Section 3 contains some background
material on the nonparametric approach to system identifi-
cation introduced in Pillonetto and De Nicolao (2010) and
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