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a b s t r a c t

Emergency response applications for nuclear or radiological events can be significantly improved via
deep feature learning due its ability to capture the inherent complexity of the data involved. In this paper
we present a novel methodology for rapid source estimation during radiological releases based on deep
feature extraction and weather clustering. Atmospheric dispersions are then calculated based on iden-
tified predominant weather patterns and are matched against simulated incidents indicated by radiation
readings on the ground. We evaluate the accuracy of our methods over multiple years of weather
reanalysis data in the European region. We juxtapose these results with deep classification convolution
networks and discuss advantages and disadvantages. We find that deep autoencoder configurations can
lead to accurate-enough origin estimation to complement existing systems, while allowing for rapid
initial response.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In the field of atmospheric dispersion modelling and its appli-
cations for supporting decision making during events of atmo-
spheric releases of hazardous substances (e.g. radioactive material),
inverse source-term estimation and source inversion refer to
computational methods aiming at estimating the location and/or
the emitted quantities of the hazardous material using both ob-
servations (readings on the ground) and results of dispersion
models. Such methods are typically used when the presence of a
hazardous substance above the background levels in the air is
detected by an existing monitoring network, while its origin is
unknown.

The most characteristic example of a real case involving radio-
active elements that have been detected before the release was
officially announced is the Chernobyl Nuclear Power Plant acci-
dent1. The Acerinox (or Algeciras) incident is another example of an
unknown radioactive release that was traced back after

radioactivity levels higher than the background had been observed
at very long distances from the release location (Noureddine et al.,
2003).

Depending on various factors, such as the spatial resolution
desired, traditional inverse modelling can be computationally
expensive, and therefore time-consuming, rendering its application
problematic when timing is critical. In addition, atmospheric
dispersion models, e.g. HYSPLIT (Draxler, 1999; Stein et al., 2015),
are complex pieces of software that require expert training and
case-by-case application. In this paper we present a novel, com-
plementary approach based on data analytics and deep learning.
Our goals are to effectively transfer the computational bulk before
the time of such an event taking place, create reusable data by-
products of value and complement existing emergency response
methodologies. While the computational bulk, involving the
training of deep feature learning models, is inherently time-
consuming, it leads to rapid (in the order of a few seconds) initial
estimates during events through the reusability of the data and
models generated.

Focusing on the European region, we cluster re-analysis weather
data in order to derive weather circulation patterns, which affect
plume dispersion. We then calculate plume dispersions for a
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number of European nuclear power plant facilities of interest,
based on representative cluster descriptors. Last, we match previ-
ously unseenweather to the weather patterns we have learned and
rank the nuclear facilities according to how well their plume
dispersion for the closest weather patterns match current hypo-
thetical radiation measurements.

This work combines data analytical and machine learning
methods and large weather and atmospheric dispersion datasets
and models in a single framework for rapid source estimation.

We make the following contributions:

1. we propose and evaluate a novel data-driven methodology for
release origin estimation;

2. we evaluate a series of autoencoder configurations, followed by
k-means clustering applied on weather re-analysis data;

3. we juxtapose our method with deep convolution networks for
classification, discussing their respective advantages and dis-
advantages; and

4. we present an application prototype for the rapid estimation of
release origin and its implementation.

In the following section we provide a succinct discussion of
related approaches, technologies and methods. In Section 3 we
present the proposed methodology and rationale, while in Section
4 we provide a discussion of our evaluation methodology and
discuss results and findings. In Section 5 we present a pilot appli-
cation showcasing the proposed approach. In Section 6 we
conclude the paper and discuss directions for future work, while in
Section 7 we point to software resources to encourage cross-
examination and replication.

2. Related work

This study combines algorithms and methods borrowed from a
number of disciplines, such as machine learning, weather circula-
tion clustering, atmospheric dispersion and weather modelling. An
overview of relevant work is provided below.

2.1. Discovering weather patterns

Over the last decades there have been several studies attempt-
ing to automatically discover weather patterns via unsupervised
hierarchical and iterative clustering (Huth et al., 2008), as part of
synoptic climatology (Yarnal et al., 2001). Many of these studies
have attempted to establish statistically robust representations
based on the calculation of principal components in, what this body
of literature refers to as, S- and T-modes. S-mode refers to the
typical application of principal component analysis (PCA) per
weather sample used for feature reduction, while T-mode refers to
the application of PCA per grid point or feature (In our evaluation,
in Section 4, we refer to the T-mode also as PCAT, to indicate cases
where PCA has been applied on the “transposed” form of the data
samples.). Indicatively, Huth (1996) summarises and compares
correlation, sums-of-squares, agglomerative hierarchical, PCA, k-
means and hierarchical agglomerative clustering algorithms. These
algorithms were executed on geopotential height (GHT) at a pres-
sure level of 700hPa and were evaluated using internal metrics,
such as consistency and robustness. According to Huth, there is no
clear winner for clustering weather patterns, however T-mode PCA
appears to produce clusters that resemble manually identified
weather patterns more accurately. Methods based on more recent
advances in neural networks, employing self-organising maps,
have also been reported (Cavazos, 2000; Hewitson and Crane,
2002).

Other classification and clustering approaches tailored to

specific applications or geographical regions have been published.
Teixeira de Lima and Stephany (Teixeira de Lima and. Stephany,
2013) evaluate a multitude of weather variables for extreme
weather classification. Straus et al. (Straus et al., 2007). use a
modified version of k-means clustering for the pressure level of
200hPa and zonal winds to discover and analyse winter circulation
regimes over the Pacific-North American region. Hsu and Cheng
(2016) evaluate daily average surface wind measurements to
discover weather patterns affecting air pollution inwestern Taiwan.
Focusing on the urban heat island, the phenomenon in which an
urban area is significantly warmer than its surrounding rural areas
due to human activity, Hoffmann and Schlünzen (Hoffmann and
Heinke Schlünzen, 2013) study k-means on a number of variables
such as GHT, relative humidity, vorticity, and others. Bannayan et al.
use temperature, precipitation and solar radiation in a k-nearest
neighbour approach for real-time prediction of daily weather data
(Bannayan and Hoogenboom, 2008). Extracting information out of
weather patterns has also been reported in cases of fire spread
modelling by Duane et al. (Duane et al., 2016). Al-Alawi et al.
employ PCA for feature reduction, as part of a combination of
principal component regression and feed-forward neural networks,
for the prediction of ozone concentration (Al-Alawi et al., 2008).

Far from being exhaustive, the above studies are indicative of
the multitude of applications, clustering and classification ap-
proaches reported in the wider area of environmental modelling.
While part of our study involves discovering useful weather pat-
terns, our application of these clusters is specific to capturing the
conditions leading to similar plume dispersions. Our experiments,
reported in Section 4, focus on GHT as a feature predictive of cir-
culation patterns and consequently, plume dispersion.

2.2. Autoencoders for feature reduction

An autoencoder (LeCun et al., 1998a; Bengio, 2009; Goodfellow
et al., 2016) is an unsupervised feed-forward neural network
designed to approximate the identity function, i.e. one that at-
tempts to learn a function hðxÞ ¼ bxzx, where x and bx denote the
input and output vectors respectively. Post-training, applications
typically disregard the output of autoencoders, instead making use
of the activation values of the hidden layers. These constitute latent
representations of the input. The activations of simple, single-layer
auto-encoders have been shown to be equivalent to principal
components (Bourlard and Kamp, 1988).

In its simplest form, when there is a single hidden layer and the
number of hidden units equals the number of inputs, the auto-
encoder is too successful in replicating the input, leading to over-
fitting. Various methods have been suggested to avoid overfitting,
e.g. having fewer hidden than input units, enforcing activation
sparsity or introducing noise which the auto-encoder learns to
compensate for (Vincent et al., 2008; Vincent and Larochelle, 2010).
An alternative approach is to use deeper configurations of stacked
autoencoders, where inner layers encode and decode previously
encoded vectors. Encodings generated by stacked autoencoders can
capture deeper statistical representations of the input data.

Autoencoders have been augmented by different types of deep
neural networks, such as convolutional networks, or convnets.
Convnets (LeCun et al., 1998b; Goodfellow et al., 2016) are designed
to discover multi-dimensional patterns of varying sizes and have
been used, stand-alone or as part of more complex configurations,
primarily in classification-based image recognition. Convolutional
autoencoders are formed by stacking convolutional layers, fully
connected layers and de-convolutional layers in a single configu-
ration in order to capture feature hierarchies in the input space
(Masci et al., 2011).

In this study we evaluate simple, stacked and convolutional
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