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a b s t r a c t

We present two Bayesian compressive sensing (BCS) imputation methods, BCS-on-Signal and BCS-on-
IMF, and compare to temporal and spatio-temporal methods. We build sparse BCS models using avail-
able data, then use this sparse model for imputation. Most BCS applications have the sparse data
distributed across the computational space, in our adaptation the “sparse” data are outside the recon-
struction space. We used 30 years of temperature data and created gaps of 1% (~110 days), 5% (~1.5 years),
10% (~3 years), and 20% (~6 years). Performance was not sensitive to gap size with RMSE slightly above
6 �C for the BCS-on-Signal and Temporal models, the two best methods. The methods which only
required data from the target station performed as well as, or better than, the spatio-temporal model
which requires data from surrounding stations. Visually the BCS-on-IMF results seem to better represent
longer-period random temporal fluctuations while having poorer performance metrics.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Various data compression or reduction methods can accurately
represent full data sets using very sparse data representations. To
our knowledge, the ability to regenerate a signal from a sparse data
set has not been exploited to impute missing data in the environ-
mental sciences, although that is essentially what many of these
sparsity-based compression/reduction methods are doing. The
main difference between using a sparse representation to recon-
struct the original signal and using this approach for data impu-
tation is that data used for reconstruction are distributed
throughout the signal while data used for imputation are complete
(or dense) outside gaps and no data within the gaps. This paper
explores whether these sparsity-based approaches can be used for
data imputation given this difference.

We propose two novel imputation methods using sparsity-

based compression sensing (CS) approach. We find that one
method provides predictions as accurate as commonly-used
imputation methods, while the other provides promise in accu-
rately capturing trends and variation in the data. This work is of
interest and beneficial because sparsity-based compressive/data
reduction methods are fast, rely only on the signal of interest (do
not need data from other locations or sources), and can be imple-
mented relatively automatically, that is a user does not need to
provide additional information about a signal. Most other
commonly used methods for environmental data imputation, such
as the temporal and spatio-temporal models compared in this pa-
per, require more application- and data-specific information for
modeling. For example, we know our temperature data have a
strong annual trend and use that feature in both the temporal and
spatio-temporal models. In contrast the CSmethods did not require
domain-specific knowledge to fit and model the data; we did not
need to explicitly use the annual periodic nature of the data. This
study provides evidence that these sparsity-based methods, both
the CS methods presented and other compressive techniques, can
be of value for environmental data imputation.

Environmental sciences use time series data, such as

* Corresponding author.
E-mail addresses: williams.d.alex17@gmail.com (D.A. Williams), Benjamin.w.

nelsen@gmail.com (B. Nelsen), cberrett@stat.byu.edu (C. Berrett), gus.williams@
byu.edu (G.P. Williams), todd.moon@usu.edu (T.K. Moon).

Contents lists available at ScienceDirect

Environmental Modelling & Software

journal homepage: www.elsevier .com/locate/envsoft

https://doi.org/10.1016/j.envsoft.2018.01.012
1364-8152/© 2018 Elsevier Ltd. All rights reserved.

Environmental Modelling & Software 102 (2018) 172e184

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
mailto:williams.d.alex17@gmail.com
mailto:Benjamin.w.nelsen@gmail.com
mailto:Benjamin.w.nelsen@gmail.com
mailto:cberrett@stat.byu.edu
mailto:gus.williams@byu.edu
mailto:gus.williams@byu.edu
mailto:todd.moon@usu.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.envsoft.2018.01.012&domain=pdf
www.sciencedirect.com/science/journal/13648152
http://www.elsevier.com/locate/envsoft
https://doi.org/10.1016/j.envsoft.2018.01.012
https://doi.org/10.1016/j.envsoft.2018.01.012
https://doi.org/10.1016/j.envsoft.2018.01.012


streamflow, temperature, wind speed, and solar radiation, to
describe the environment. These data are used to better under-
stand, plan, manage, or control a wide variety of important hy-
drologic and environmental processes (Khalil et al., 2001).
Unfortunately, while there are numerous environmental data ar-
chives, nearly all the available data series have gaps or periods of
missing data (Gill et al., 2007; Di Piazza et al., 2011; Gyau-Boakye
and Schultz, 1994; Sorjamaa et al., 2010; Mariethoz et al., 2015).
Studies have shown that these missing data can affect data analysis
and modeling. To effectively use these data series, the gaps must be
filled using imputation methods (i.e., data estimation) (Gill et al.,
2007; Sorjamaa et al., 2010; Gilroy, 1970; Henn et al., 2012;
Raman et al., 1995; Oriani et al., 2016; Wang, 2008).

Data imputation in the earth sciences has a significant amount
of reported research with methods ranging from simple replace-
ment, to using spatially-correlated data, to various interpolation
schemes, to complex statistical models. Simple examples include
Battaglia and Protopapas (2012) and Auer et al. (Aueret al, 2007)
who estimated missing temperature values using nearby stations
with a simple offset; Craigmile and Guttorp (2011) who used only
data from the target site and for a single missing value averaged
observed values before and after and for longer gaps used an
average of the values from the previous and following year; and
Benth et al. (Benth et al., 2007) and Lemos et al. (Lemos et al., 2007)
who reported similar approaches. More complex approaches
include spatio-temporal models (Jeffrey et al., 2001), pattern
matching (Mariethoz et al., 2015), and data modeling (Romanowicz
et al., 2006). A large part of the published imputation work ad-
dresses streamflow or precipitation data and includes approaches
such as spatial correlation with nearby sites (Gilroy, 1970; Beard,
1962; Fiering, 1962; Moran, 1974; Giustarini et al., 2016; Serrano-
Notivoli et al., 2017), multivariate statistics (Kuczera, 1987; Vogel
and Stedinger, 1985; Grygier et al., 1989); Bayesian modeling
(Wang, 2008), and models such as neural networks (Khalil et al.,
2001; Coulibaly and Evora, 2007; Kim and Ahn, 2009), chaos the-
ory (Elshorbagy et al., 2002a), and a Markov-chain Monte Carlo
algorithm within a Bayesian modeling framework (Lemos et al.,
2007).

Researchers have reported comparisons between different
methods, examples include Beauchamp et al. (Beauchamp et al.,
1989) who compared a regression approach to a time-series
approach and found that the time series approach performed bet-
ter; Gyau-Boakye and Schultz (1994) who evaluated 10 methods
and reported the best method varied depending on location and
data; Raman et al. (Raman et al., 1995) who compared regression
methods; and Hirsch (1982) who compared two regression
methods and two maintenance of variance extension (MOVE)
methods and found theMOVE approaches better. Other researchers
have extendedMOVE techniques to include other variables (Grygier
et al., 1989). Researchers have reported that nearest neighbor
methods were better than ARMA models for stream flows
(Jayawardena and Lai, 1994), that ANN approaches were better than
ARMA models (Hsu et al., 1995), and that ANNs performed better
than linear regression (Elshorbagy et al., 2000) and nonlinear
regression (Elshorbagy et al., 2002b). Besides stream flow, using
ANN models for data imputation for other spatio-temporal data
types has been reported (Diamantopoulou, 2010). This is not a
comprehensive literature survey as the field is very large with a
long tradition, but is intended to show the range of work in this
area and also that reported “best” methods are dependent on data
specifics, with no clear “best” method.

This paper presents two data imputation methods using
Bayesian compressive sensing (BCS). In the first we apply BCS to the
original signal to impute data to fill gaps in the data series. In the
second, we first decompose the signal into a series of IMFs using

EMD then apply BCS to each IMF in turn to impute data to fill the
gaps, then recreate the signal by summing the filled IMFs. We hy-
pothesized that as IMFs are less complex than the parent signal it
would be easier to use BCS to model each IMF individually then use
the IMFs to recreate the full signal.We present some background on
BCS and EMD methods along with the formulation of our two
models.

Using three different performance metrics and a number of
different gap sizes and locations, we compare these BCS models to
three other approaches: simple linear interpolation, a temporal
model, and a spatio-temporal model. These methods were selected
to represent a range of complexity and data requirements. For
context we present information on the data series, the performance
metrics, and the three imputation models used for comparison. We
discuss the results and some features of the models and present our
conclusions.

2. Background

2.1. Approach

CS exploits sparsity and is capable of representing a signal using
a sampling frequency significantly less than the Nyquist frequency
(Cand�es andWakin, 2008; Cand�es, 2006; Shannon, 1949). BCS casts
the resulting optimization problem in a Bayesian framework for
computational advantages. CS and BCS are most often used for data
reduction or compression by taking an original signal and discov-
ering a sparse representation then using this sparse representation
to recreate the original signal when required. We use this process
for data imputation by building a sparse CS model with existing
data then “recreate” missing data using the sparse model
(Gemmeke et al., 2010; Gemmeke and Cranen, 2008). Commonly CS
uses the sparse signal model to recreate the original signal between
sparse measurement points that are distributed throughout the
signal space. This allows a minimal number of measurement points
to either be taken (reducing measurement time) or stored
(reducing data size). We adapted this approach for data imputation
by retaining all the original data, then recreating the data across the
gap. As noted above, the main difference between using a sparse
representation to reconstruct the original signal and using a sparse
model for data imputation is that data used for reconstruction are
distributed throughout the reconstruction space while data used
for imputation are complete (or dense) outside gaps and no data
within the reconstruction space or gaps.

Empirical Mode Decomposition (EMD) (Huang et al, 1998) is a
signal deconvolution method that works with non-stationary, non-
linear, semi-periodic data; typical of environmental data series.
EMD is data driven and does not assume or require a stationary or
linear signal. EMD decomposes a signal into a series of intrinsic
mode functions (IMFs) each representing independent components
of the signal and a residual. Summing the IMFs and the residual
exactly reproduces the original signal.

We evaluated these two BCS methods using historic tempera-
ture data from the Salt Lake City Airport, a long-term record, to
characterize their behavior. We created gaps of various lengths in
the signal, used the different methods to fill the gaps, and then
compared the imputed data with the original signal. We compared
the BCS methods with commonly used data imputation methods; a
temporal spline, a spatial-temporal spline, and linear interpolation.
The two BCS methods and the temporal spline only require data
from the target station, the spatio-temporal spline requires data
from surrounding stations.

While we used temperature data for this example, mostly
because of the available long continuous data set for verification,
this approach could be applied to any semi-periodic or cyclic earth
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