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a b s t r a c t

Despite various criticisms of GLUE (Generalized Likelihood Uncertainty Estimation), it is still a widely-
used uncertainty analysis technique in hydrologic modelling that can give an appreciation of the level
and sources of uncertainty. We introduce an augmented GLUE approach based on a Gaussian Process
(GP) emulator, involving GP to conduct a Bayesian sensitivity analysis to narrow down the influential
factor space, and then performing a standard GLUE uncertainty analysis. This approach is demonstrated
for a SWAT (Soil and Water Assessment Tool) application in a watershed in China using a calibration and
two validation periods. Results show: 1) the augmented approach led to the screening out of 14e18
unimportant factors, effectively narrowing factor space; 2) compared to the more standard GLUE, it
substantially improved the sampling efficiency, and located the optimal factor region at lower compu-
tational cost. This approach can be used for other uncertainty analysis techniques in hydrologic and non-
hydrologic models.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Distributed hydrological modelling is a way to understand site-
specific hydrology and support operational management, planning
and decision making in water resources under various scenarios
(e.g., water use, land use change, or climate change) (Arnold et al.,
2015). Prior to its application, models generally go through a so-
called calibration process. Although the hydrologic and other
environmental modeling communities have generally promoted
the concept and desirability of uncertainty analysis (UA) (e.g. Beven
and Freer, 2001; Todini, 2007; Jakeman et al., 2006), there is still a
need for its more widespread general practice, especially for
distributed hydrologic modelling (Muleta and Nicklow, 2005; Yen
et al., 2015). For example, most applications are still based on
reporting a single optimum parameter set (Fang et al., 2015; Liu
et al., 2011; Luo et al., 2012). The reasons are multifold; for
example, some uncertainty analysis techniques are difficult to
apply (e.g. the need for testing statistical assumptions in Bayesian
inference; see Yang et al., 2008 for a discussion), or only one

parameter set is intended or sought for decision making (Song
et al., 2015). For complex environmental models, as occur in
distributed hydrologic modelling, a restriction would often be the
number of model runs required for the UA, which can be a burden,
even with the ongoing advances in information technology (e.g.
increase of CPU speed and parallel computation technology).

Various quantitative UA techniques have been developed or
applied in the literature (Matott et al., 2009) and there are now
many societies and journals that promote UA. In the hydrologic
modelling literature, such techniques include Generalized Likeli-
hood Uncertainty Estimation or GLUE for short (Beven and Binley,
1992), SUFI (Abbaspour et al., 2007), first-order approximation
(Vrugt and Bouten, 2002), and Bayesian inference (Kuczera and
Parent, 1998; Kavetski et al., 2006; Yang et al., 2007). Among all
these techniques, GLUE is still by far the most widely applied
technique in hydrology (Shen et al., 2012; Stedinger et al., 2008)
due to its simplicity and practicality, though it has been criticized
for several reasons including its informal statistical basis, sampling
inefficiency and flat response surface (Mantovan and Todini, 2006;
Yang et al., 2008; Beven and Binley, 2014). On the other hand, it can
be argued that GLUEwarrants use as a guide at least to appreciating
the level of various sources of uncertainty. When applying GLUE,
however, one might face a substantial computational burden as
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captured in Beven and Binley (2014; Page 5905) who state “it re-
mains an issue, either because of a model that is particularly slow to
run so that it is still not possible to sample sufficient realizations or
because of a high number of parameter dimensions”. This often
arises in spite of suggestions (e.g. McMillan and Clark, 2009) to seek
increases in the efficiency of finding behavioral models. It has been
noted that the sample efficiency (i.e., number of behavioral sets
over number of sampling sets) of some applications can be lower
than 10�4 (Iorgulescu et al., 2005, 2007; Yang et al., 2008).

Over recent decades, emulators (or in some literature meta-
models or surrogate models) have been widely applied as a sur-
rogate to deterministic models, partly to overcome the high
computational cost of the latter. But certain types of surrogates like
Gaussian Processes can also be used to assess properties of the
model response surface (e.g. see Asher et al., 2015 for a review in
the groundwater domain). These emulators include polynomial
regression (Jones, 2001), multivariate adaptive regression splines
(Friedman, 1991), radial basis functions (Dyn et al., 1986), poly-
nomials chaos (Wiener, 1938; Xiu and Karniadakis, 2002) and
Gaussian Processes (Kennedy and O'Hagan, 2001; Sacks et al.,
1989). Most of these applications (especially in hydrologic model-
ling) have been for optimization (Emmerich et al., 2006; Jones,
2001) and global sensitivity analysis (Oakley and O'Hagan, 2004;
Ratto et al., 2007).

In this paper, we propose an emulation-augmented GLUE, using
Gaussian Process (GP) emulation of the original model, to help
conduct uncertainty analysis. This GLUE-GP uses global and local
sensitivity analysis arising as a natural byproduct of the GP
emulation to screen out unimportant parameters and reduce the
ranges of more sensitive ones, implemented in the software GEM-
SA (www.tonyohagan.co.uk/academic/GEM/), before application of
GLUE. The GP also allows improvement in the sampling efficiency
and location of the optimal region for GLUE sampling at a much
lower computational cost than the standard GLUE. The GLUE-GP
method is thus akin to GLUE in the sense that it is an augmenta-
tion that applies a GLUE procedure but only to those factors and
their ranges as informed by the initial GP emulation and its
inherent sensitivity analysis. Thus it is an approximation of GLUE
whose differences are numerically investigated here in both cali-
bration and validation modes. This approach is demonstrated on
the semi-distributed hydrologic model SWAT (Soil and Water
Assessment Tool; Arnold et al., 1998) with an application to the
Kaidu River Basin in Xinjiang, China, which is an important water
source for human activity and ecological function in the oasis
downstream.

The remainder of this paper is structured as follows: section 2
gives a brief introduction to GLUE and the GP emulator, and then
focuses on the proposed emulation-based GLUE approach (GLUE-
GP) and case study; section 3 introduces the SWAT model and case
study area; section 4 presents and discusses results; and finally
conclusions are summarized in section 5.

2. Methodology

A large class of hydrologic and environmental models can be
formulated as y ¼ f ðxÞ, where x ¼ (x1, x2, …, xm) is a vector of m
factors and y is either scalar or vector model output (e.g., flow rate
time series) or objective function (e.g., root mean square error be-
tween simulated and observed flows), and the notation xji to indi-
cate the jth realization of the ith factor of x. Here, we distinguish
factors from model parameters in that a factor could be a model
parameter or a modification to a distributed parameter either in a
relative way or with a replacement to their initial values (examples
are given in Table 1 and section 3.2). Thus we use the terminology
factors instead of model parameters for the GP and uncertainty

analyses below.

2.1. GLUE

GLUE (Beven and Binley, 1992, 2014) is an uncertainty analysis
technique inspired by the regional sensitivity analysis of
Hornberger and Spear (1981). In contrast to assuming that there is a
single “optimal” factor set for a model, it is based on the concept of
“equifinality” in which different “behavioral” factor sets lead to
similarly good model results in some sense. It recognizes that most
environmental models used for prediction are non-identifiable due
largely, but not only, to the over-parameterised structure of the
model (see Shin et al., 2015 for an overview of methods to check
structural identifiability). Fig. 1(a) shows a typical procedure for
uncertainty analysis based on GLUE.

When applying GLUE, one needs to define an objective function
L(.) (or “generalized likelihood measure”), and a given threshold
value which is used to assess if a sampled factor set is “behavioral”
or “non-behavioral” through a comparison: if the corresponding
“likelihood measure” is better or worse than the given threshold
value. Each behavioral factor is then given a “likelihood weight”
according to:

wi ¼
L
�
xi
�

PN
k¼1L

�
xk
� (1)

where LðxiÞ is the objective function value of factor set xi, and N is
the number of behavioral factor sets from NT total samples. Then
the model predictive uncertainty is described as a prediction band
from the cumulative distribution of the model output realized from
the weighted behavioral factor sets.

Based on these behavioral and non-behavioral factor sets, factor
sensitivity can also be studied with Regionalized Sensitivity Anal-
ysis (RSA; Spear and Hornberger, 1980) which inspired GLUE but is
not generally part of GLUE. The idea of RSA is: if the distributions of
a factor in the behavioral and non-behavioral factor sets are dis-
similar then this factor is considered influential. In practice, this is
performed with the Kolmogorov-Smirnov test to obtain a distance
measure (D) which is the maximum distance between the two
empirical cumulative distributions (i.e. behavioral and non-
behavioral).

2.2. Gaussian Process emulator

The emulator we invoke is the Gaussian Process emulator,
although other emulators such as those based on Polynomial Chaos
(Wiener, 1938; Xiu and Karniadakis, 2002) have similar advantages,
mainly sampling efficiency improvements and global and local
sensitivity measures as byproducts of the emulation (largely
because such emulators and their response surfaces are continuous
functions which can be differentiated). The idea is to construct a
simpler and computationally efficient model as a surrogate for the
complicated (more physically based) and less computationally
efficient model. When applying a GP emulator to a hydrologic
model y ¼ f ðxÞ, it approximates f ðxÞ as a Gaussian process
(Kennedy and O'Hagan, 2001)

bf ðxÞ ¼ mðxÞ þ eðxÞ ¼ hðxÞTbþ eðxÞ (2)

where x is a vector of factors, mðxÞ is the mean function, hðxÞ a
known regression function, and e(x) a zero mean Gaussian process
with correlation given by cov½f ðxÞ; f ðx0 Þ� ¼ s2cðx; x0 Þ. In this study
cðx; x0 Þ is a correlation function between two points x and x

0
that

takes the form exp½�ðx� x
0 Þqðx� x

0 Þ�.
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