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a b s t r a c t

We assessed whether a complex, process-based ecohydrological model can be appropriately parame-
terized to reproduce the key water flux and storage dynamics at a long-term research catchment in the
Scottish Highlands. We used the fully-distributed ecohydrological model EcH2O, calibrated against long-
term datasets that encompass hydrologic and energy exchanges, and ecological measurements. Applying
diverse combinations of these constraints revealed that calibration against virtually all datasets enabled
the model to reproduce streamflow reasonably well. However, parameterizing the model to adequately
capture local flux and storage dynamics, such as soil moisture or transpiration, required calibration with
specific observations. This indicates that the footprint of the information contained in observations varies
for each type of dataset, and that a diverse database informing about the different compartments of the
domain, is critical to identify consistent model parameterizations. These results foster confidence in
using EcH2O to contribute to understanding current and future ecohydrological couplings in Northern
catchments.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Numerical models are crucially important in the environmental
sciences: models can complement and integrate theory and
empirical data by incorporating testable hypotheses and by
extending knowledge at spatial and/or temporal scales inaccessible
to current observation methods. In particular, process-based
models seek to explicitly represent the “state variables and fluxes
that are theoretically observable and can be used in the closure of
assumed forms of the laws of conversation of mass, energy, and mo-
mentum at temporal scales characterizing the underlying physical
processes” (adapted from Fatichi et al., 2016). In contrast to con-
ceptual and empirical approaches, physically-based models facili-
tate investigation of specific variables at local, process-specific
scales (e.g., Endrizzi et al., 2014; Manoli et al., 2017; Niu and
Phanikumar, 2015; Pierini et al., 2014). Additionally, a fully-
distributed description of the simulation domain opens the

possibility for tracking intra-system patterns and dynamics (e.g.
Maxwell and Condon, 2016; Pierini et al., 2014), a task much less
accessible to coarser spatial representations (i.e., lumped or semi-
distributed models). Combining these two methodological
choices with physically-based, fully-distributed models is thus a
way to disentangle feedbacks and non-linear dynamics across
fundamentally different processes (e.g. Drewry et al., 2010; Tague,
2009), and better predict system behaviour outside recorded
environmental conditions (Seibert, 2003; Uhlenbrook et al., 1999).
These tools are of particular relevance for the emerging field of
critical zone science (National Research Council, 2012), which seeks
integrated understanding of ecological, geological, geomorpho-
logical and pedological processes within a framework of hydro-
logical partitioning (Brooks et al., 2015).

Within the field of hydrology the issue of appropriate model
complexity is a focus of ongoing discussion. The corollary of
expanding process-based approaches towards an “universal
model” is an inevitable increase in complexity as explicit de-
scriptions of additional system characteristics are added (e.g.
topography, soil texture, tree height, canopy density etc.) (Band
et al., 2001; Maxwell and Condon, 2016). Arguing that many of
these numerous parameters cannot be appropriately measured,
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some fear that evolution of complexmulti-disciplinarymodels only
layer up unavoidable uncertainty and are prone to equifinality,
whereby several combinations of parameter values erealistic or
note yield comparable performance (e.g. Beven and Binley, 1992;
Beven and Freer, 2001; McDonnell et al., 2007).

The utility of measurements to help constrain the model solu-
tion space and identify feasible model configurations has been an
increasingly central issue in hydrological model calibration. Suffi-
ciently informative observations are necessary to ensure that the
goodness of model-data fit attained effectively translates into
physically-sound information for the internal model parameters;
i.e., getting the right answers for the right reasons (Beven and
Binley, 1992; Kirchner, 2006). The problem of equifinalityea
particular case of underdetermination (Duhem, 1954)eis apparent
when stream discharge is the only monitored variable available for
calibration. Unfortunately, this remains the most common situa-
tion. The widespread use of streamflow time series to calibrate and
validate models has spurred the development of elaborate single
and multiple-criteria goodness-of-fit metrics (Kling et al., 2012;
Krause et al., 2005; Legates and McCabe, 1999; Madsen, 2003;
van Werkhoven et al., 2009) and calibration algorithms (Duan
et al., 1992; Gupta et al., 1998; Sorooshian and Dracup, 1980; Tang
et al., 2007; Tolson and Shoemaker, 2007) directed toward
extracting a maximum of information content from this type of
data (He et al., 2015; Rouhani et al., 2007; Shafii et al., 2017).

However, the information contained in streamflow time series is
often insufficient to inform the parameterization of physically
based models. Parameter values that represent physical properties
of the catchment are usually poorly identified and become very
sensitive to boundary conditions (Maneta et al., 2007). The situa-
tion deteriorates as more complex models incorporate increasingly
detailed descriptions of catchment functioning. To constrain pa-
rameters of components associated with different subdomains of
the model (ecological, surface, subsurface, etc.) it is desirableebut
often impracticaleto diversify data sources (Fang et al., 2013;
Larsen et al., 2016; Rajib et al., 2016; Thorstensen et al., 2015).
Combining different types of observations reduces information
redundancy and provides direct insights into the different groups of
physical processes represented in the model (Clark et al., 2011;
Fatichi et al., 2016). A data-extensive approach to model calibra-
tion makes the choice of performance metrics easier because the
information contained in observations is more directly related to
the model compartment being calibrated (e.g. Birkel et al., 2014).
Information diversity, however, brings other issues related to the
assimilation of observations with diverse characteristics during
calibration: some are technical e.g. combining spatio-temporal
scales and associated uncertainties, while others are more funda-
mental to modelling, e.g. parameters compensating for model im-
perfections (Clark and Vrugt, 2006), or overlapping constraints and
thus, possibly “pulling” the model in different directions
(Efstratiadis and Koutsoyiannis, 2010). In other research fields, this
approach is exemplified by the current efforts and associated
challenges in assimilating multiple types of carbon cycle data to
optimise Earth system models (Kaminski et al., 2013; Peylin et al.,
2016).

The ecohydrology of high-latitude, energy-limited landscapes
has traditionally been understudied despite the global ecological
importance of this region. Since studies of plant-water couplings
across disciplines gained momentum in the late 90s (Bonell, 2002),
research efforts in ecohydrology have been primarily conducted in
environments where water scarcity (Newman et al., 2006) or per-
manent presence (e.g., wetlands (Rodriguez-Iturbe et al., 2007))
makes hydrology an obvious, critical control upon how plants
distribute and compete. Only recently, efforts have been directed
towards understanding the specific ecohydrological processes of

boreal, energy-limited regions (e.g. Cable et al., 2014) While there
have been process-based model developments dedicated to the
hydrology of high-latitude environments (e.g. Endrizzi et al., 2014;
Kuchment et al., 2000; Lindstr€om et al., 1997; Pomeroy et al., 2007),
most model applications in these regions lack an explicit imple-
mentation of vegetation dynamics (e.g. Ala-aho et al., 2017a), and
thus, cannot finely capture ecosystem imprints on water parti-
tioning at the catchment scale.

High-latitude regions comprise mixed temperate forests, boreal
forests and tundra, covering nearly 20% of the continental land
mass (Tetzlaff et al., 2015a). These regions are subject to rapid
climate change, with significant regional to global-scale implica-
tions (Hinzman et al., 2013), including shifts in precipitation regime
and snow-mediated water balance (Bintanja and Andry, 2017;
Jim�enez Cisneros et al., 2014) and associated implications for
runoff generation (Peterson et al., 2002; Zhang et al., 2014). While
such environmental change has been observed to alter water
pathways and flow regimes (Dye and Tucker, 2003; McClelland
et al., 2006; Tetzlaff et al., 2013) and ecosystem dynamics (Naito
and Cairns, 2015; Piao et al., 2008), further work is needed to
identify the underlying mechanisms. Reasons for the limited un-
derstanding so far lie in the fine-scale landscape heterogeneity and
the implications for spatial variation in energy inputs, as well as the
logistical difficulties of collecting data in comparatively remote
areas (Pomeroy et al., 2013; Tetzlaff et al., 2013), and the alarming
recent decline in long-term monitoring of northern catchments
(Laudon et al., 2017). However, we need to understand such pro-
cesses and the related uncertainties of water cycling in these re-
gions, while ongoing/projected biome shifts (e.g., (Beck et al., 2011;
Williams et al., 2007)) call for particular scrutiny of ecosystem in-
fluence on water availability (Law, 1956) and vice-versa.

In this study, our main aim was to investigate to what extent a
data-extensive approach to calibration can constrain the range of
behavioural configurations of a highly-parameterized, physically-
basedmodel, such that the achieved parameter sets can be used as
falsifiable hypotheses of the internal functioning of the catch-
ment. For this, we used a distributed ecohydrologic model (EcH2O,
see (Maneta and Silverman, 2013) that integrates a kinematic
hydrologic and energy balance model, with a vegetation dynamics
model. The model is calibrated using several combinations of data
types covering a range of ecohydrological variables collected at a
long-term experimental northern montane catchment. We ask
the following questions through our modelling experiments, 1)
what are the physical insights gained across ecohydrological
processes? 2) how valuable are the information contents brought
by the different constraining datasets? Addressing these ques-
tions will help building a robust ecohydrological modelling
framework dedicated to critical zone functioning in high-latitude
environments.

2. Material and methods

2.1. Study site

The Bruntland Burn (Fig. 1) is a small catchment (3.2 km2)
located in the eastern Scottish Highlands (57�80N 3�200W). It is a
headwater of the River Dee, which provides drinking water for the
city of Aberdeen (250,000 people), ecosystem services such as an
Atlantic salmon fishery, and has EU conservation designations. The
region receives around 1100mm of average annual precipitation
(P), distributed quite evenly throughout the year, although
NovembereFebruary and JuneeAugust are usually wettest and
driest periods, respectively. Less than 5% of P occurs as snowfall.
The climatic water balance is energy-limited, with 400mm of
annual Potential Evapotranspiration (PET). The mean annual
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