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a b s t r a c t

Species distribution modelling (SDM) was integrated in version 2.0 of the BiodiversityR package released
in 2012. Ensemble habitat suitability is calculated as the weighted average of suitabilities predicted by
different algorithms. Advanced options for SDM in the current version (2.8e4) of the package include
tuning the best combination of the number and weights of models contributing to the ensemble suit-
ability and calculating the absence-presence threshold as the average or minimum of recommended
threshold values. Algorithm-specific suitability values can be transformed via generalized linear models
with probit link so that they become more similar in range. Other options include reducing spatial sorting
bias by selecting background locations in circular neighbourhoods and generating suitability maps that
show the number of contributing models that predict species presence. The approaches are illustrated
for two species with open-access point location data sets, Bradypus variegatus and Thryothorus
ludovicianus.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Species Distribution Models (SDMs; other names for these
models include Ecological Niche Models and Habitat Suitability
Models) are widely used in ecological studies (for an overview of
the SDM framework, see Guisan and Zimmermann, 2000; Guisan
and Thuiller, 2005; Elith and Leathwick, 2009; Miller, 2010;
Thuiller and Munkemuller, 2010; Hijmans and Elith, 2016). Recent
developments in the calibration of SDMs such as the application of
machine-learning algorithms (Elith et al., 2006; Wisz et al., 2008)
and the use of ensemble (consensus) procedures (Araújo and New,
2007; Marmion et al., 2009; Thuiller et al., 2009; Buisson et al.,
2010; Luedeling et al., 2014; Trolle et al., 2014) allow for the crea-
tion of more reliable habitat suitability maps. When new poten-
tially superior algorithms for SDM become available, such as using
zero-inflated random variables in hybrid Bayesian networks
(Maldonado et al., 2016) or maximizing the likelihood of species
occurrence probability (Royle et al., 2012), these can be easily in-
tegrated in the ensemble modelling framework. Since these
powerful SDM methods have become available, challenges in SDM
have shifted to areas such the availability of point location data

(Boakes et al., 2010; Feeley and Silman, 2011; Duputi�e et al., 2014),
dealing with errors and bias in point location data sets (Hortal et al.,
2008; Loiselle et al., 2008; Platts et al., 2008; Phillips et al., 2009;
Lobo and Tognelli, 2011; Syfert et al., 2013; Beck et al., 2014;
Varela et al., 2014; Robertson et al., 2016) and projecting across
space and time (Dormann, 2007; Elith et al., 2010; Stanton et al.,
2012; Braunisch et al., 2013; Baker et al., 2016; Werkowska et al.,
2016).

The BiodiversityR package (Kindt, 2017) was initially developed
to accompany a manual on the statistical analysis of biodiversity
and community ecology data (Kindt and Coe, 2005). The package
currently provides a Graphical User Interface for ordination, cluster
and diversity analysis using the vegan package (Oksanen et al.,
2017). Ensemble approaches for SDM have been incorporated into
BiodiversityR version 2.0 that was released in December 2012,
initially tomakemodel calibration procedures more explicit than in
the BIOMOD package (model formulae are available as arguments in
the main function that calibrates the ensemble model and the
contributing models, whereas default formulae can be generated
with function BiodiversityR::ensemble.formulae). A second reason
was to build on functions offered by the dismo package (Hijmans
et al., 2015) such as the dismo::threshold (allowing a wider range
of methods of transforming suitability into absence-presence than
were available in BIOMOD), dismo::maxent, dismo::domain and
dismo::mahal functions (these functions fit suitability based on theE-mail address: r.kindt@cgiar.org.
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maximum entropy (Phillips et al., 2006), DOMAIN (Carpenter et al.,
1993) and Mahalanobis (1936) algorithms that were not available
in BIOMOD). A third motivation was to address the challenge of
developing R functions that create habitat suitability maps with
limited user input during short training exercises or to familiarize
users with model outputs. A final reason was to provide support to
doctoral and post-doctoral SDM research (Ranjitkar et al., 2014a,
2016a, 2014b, van Breugel et al., 2015b, 2015a, 2016b).

Since the introduction of SDM methods in BiodiversityR, the
development of SDM methods has developed independently in
BIOMOD and BiodiversityR, whereas recently a new R package for
SDM (sdm) was released (Naimi and Araújo, 2016). BiodiversityR
offers various unique methods of SDM, whereas application of
these methods is straightforward through a Graphical User Inter-
face or by using functions with default argument settings.

2. Methods and features

In a similar way to ensemble modelling approaches imple-
mented in the BIOMOD and sdm packages, SDM functions in Bio-
diversityR calculate ensemble suitability (Se) as a weighted average
of suitabilities predicted by contributing models (Si):

Se ¼
P

iwiSiP
iwi

Previous studies have shown that the consensus method based
on weighted averages may significantly increase the accuracy of
SDM (Marmion et al., 2009). The current version of BiodiversityR
(2.8e4 released in 2017) allows the calibration of 23 candidate
models that could contribute to the calculation of Se, including
maximum entropy models (available via argument MAXENT; main
R calibration function of dismo::maxent; Phillips et al., 2006; Elith
et al., 2011; Hijmans et al., 2015), maximum likelihood models
(MAXLIKE;maxlike::maxlike; Chandler and Royle, 2013; Royle et al.,
2012), two different implementations of boosted regression trees
(GBM and GBMSTEP; gbm::gbm and dismo::gbm.step; Friedman,
2001; Friedman et al., 2001; Elith et al., 2008; Ridgeway, 2015),
random forests (RF; randomForest::randomForest; Breiman, 2001;
Liaw and Wiener, 2012), (stepwise) generalized linear regression
models (GLM and GLMSTEP; stats::glm and MASS::stepAIC;
McCullagh and Nelder, 1989; Venables et al., 2002; Venables and
Ripley, 2013), (stepwise) generalized additive models (GAM and
GAMSTEP; gam::gam and gam::step.gam; Hastie and Tibshirani,
1990; Hastie, 2013), generalized additive models with integrated
smoothness estimation (MGCV and MGCVFIX; mgcv::gam; Wood,
2011, 2013), multivariate adaptive regression spline models
(EARTH, earth::earth; Friedman, 1991; Leathwick et al., 2005;
Milborrow, 2014), recursive partitioning and regression trees
(RPART; rpart::rpart; Breiman et al., 1984; Therneau et al., 2014),
artificial neural networks (NNET; nnet::nnet; Venables et al., 2002;
Ripley and Venables, 2013), flexible discriminant analysis (FDA;
mda::fda; Hastie et al., 1994; Leisch et al., 2013), two different
implementations of support vector machine models (SVM and
SVME; kernlab::ksvm and e1071::svm; Karatzoglou et al., 2013;
Meyer et al., 2014), lasso or elastic-net regularized generalized
linear models (GLMNET; glmnet::glmnet; Friedman et al., 2016,
2010), two different implementations of the BIOCLIM algorithm
(BIOCLIM and BIOCLIM.O whereby BIOCLIM.O follows the original
methodology more closely in predicting suitability as 0, 0.5 or 1.0;
dismo::bioclim and BiodiversityR::ensemble.bioclim; Nix, 1986;
Booth et al., 2014; Hijmans et al., 2015), the DOMAIN algorithm
(DOMAIN; dismo::domain; Carpenter et al., 1993) and two different
implementations of the Mahalanobis algorithm (MAHAL and
MAHAL01; dismo::mahal; Mahalanobis, 1936).

With default settings of the ensemble.batch function (Table 1),
the only inputs required from users to generate suitability maps are
presence point locations and a rasterStack object with raster layers
representing explanatory variables. In the first step of the SDM
procedure, ensemble weights for the models are obtained by a 4-
fold cross-validation procedure whereby each of the four models
are calibrated and tested with data not used for calibration
(Hijmans, 2012; van Breugel et al., 2015a; Ranjitkar et al., 2016b)
and the ensemble weight is calculated as the average AUC (the Area
Under the Receiver-operator curve, a statistic commonly used to
evaluate SD models; Bradley, 1997; Hijmans, 2012; Wisz et al.,
2008; Jim�enez-Valverde, 2012; Varela et al., 2014) over the four
cross-validations. With default settings, presence and absence lo-
cations are randomly assigned to the four cross-validation bins. An
alternative procedure (argument get.block) is available whereby
presence and absence locations are divided in four blocks created
by lines of latitude and longitude that divide the locations as
equally as possible, a procedure that is expected to reduce spatial
correlation between training and testing locations important for
evaluating models that will transfer suitability across space or time
(Muscarella et al., 2014).

Although the AUC is the most commonly used statistic to eval-
uate SDMs (Hijmans, 2012), various authors have criticised its use.
Jim�enez-Valverde (2012) documented strong correlation between
the AUC and the absence-presence threshold that makes sensitivity
(the proportion of correctly predicted presence locations) equal to
specificity (the proportion of correctly predicted absence loca-
tions). As a consequence, the AUC may be equivalent to using a
threshold that discriminates between predicted absence (unsuit-
able habitat) and predicted presence (suitable habitat), whereas the
feature of avoiding the use of such absence-presence threshold is
the main argument in favour of the AUC. When the realized dis-
tribution of the species does not represent the full potential dis-
tribution of a species, models with lower AUC can produce habitat
suitability maps that better represent the potential distribution.
Therefore, the AUC is appropriate mainly for models of realized
distributions (Jim�enez-Valverde, 2012). The AUC will be larger for
species with more restricted distributions. Therefore, the statistic is
expected to inflate when background locations are sampled from
larger areas (Lobo et al., 2008; Hijmans, 2012). Despite these
shortcomings, the AUC remains a valid measure of relative model
performance for the same species (assuming that presence loca-
tions are representative of suitable habitat) and the same study
area (Wisz et al., 2008). As such, AUC values can be used to compare
different models that are candidates to contribute to Se.

In the second step of the procedure, models with AUC values
larger than 0.7 (an AUC threshold that is often used to identify
“good” models; Hijmans, 2012) are calibrated with the full set of
presence and background point locations instead of the 75% subsets
used for the 4-fold cross-validations. In the final step, suitability
maps are generated. It is possible to modify default settings such as
the number of cross-validation steps (argument k-splits) or how
models with lower AUC values are down-weighed (setting argu-
ment ENSEMBLE.exponent results in weights calculated as AUCEN-
SEMBLE.exponent, a procedure suggested by Hijmans and Elith, 2016).
Users can also substitute objects for contributing models, opt not to
use default formulae to calibrate contributing models or use other
weights for the final step.

Suitabilities predicted by the contributing models can be
transformed by generalized linear models with probit link (argu-
ment PROBIT), thus ensuring that all suitabilities are probability
values (the BIOCLIM, DOMAIN, MAHAL and MAHAL01 algorithms
do not provide probability values). Since species presence (1) or
absence (0) are used as binary response variables for the trans-
formations, the transformation is expected to result in the ranges of
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