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a b s t r a c t

To fill a need for risk-based environmental management optimization, we have developed PESTPP-OPT, a
model-independent tool for resource management optimization under uncertainty. PESTPP-OPT solves a
sequential linear programming (SLP) problem and also implements (optional) efficient, “on-the-fly”
(without user intervention) first-order, second-moment (FOSM) uncertainty techniques to estimate
model-derived constraint uncertainty. Combined with a user-specified risk value, the constraint uncer-
tainty estimates are used to form chance-constraints for the SLP solution process, so that any optimal
solution includes contributions from model input and observation uncertainty. In this way, a “single
answer” that includes uncertainty is yielded from the modeling analysis. PESTPP-OPT uses the familiar
PEST/PESTþþ model interface protocols, which makes it widely applicable to many modeling analyses.
The use of PESTPP-OPT is demonstrated with a synthetic, integrated surface-water/groundwater model.
The function and implications of chance constraints for this synthetic model are discussed.

© 2017 Elsevier Ltd. All rights reserved.

Software availability

The source code for PESTPP-OPT is available as part of the
PESTþþ software suite (Welter et al., 2015):

https://github.com/dwelter/pestpp.
In addition to the source code, the git repository includes

statically-linked OSX and PC executables, as well as three example
problems adapted from GWM (Ahlfeld et al., 2005) (e.g., the
“dewater” problem, the “seawater” problem and the “supply2”
problem), including the example problem presented herein.

1. Introduction

Environmental modeling analyses are frequently undertaken
with the focus of providing a decision-support tool for resource
managers, a critical role for modeling (Gorelick and Zheng, 2015;
Horne et al., 2016). Rigorous resource management optimization
is a widely-recognized approach for providing optimal and unbi-
ased answers to resource management questions. Readers are

referred to Singh (2012); Yeh (2015); Gorelick and Zheng (2015);
Horne et al. (2016) among others, for recent reviews of the
importance and application of environmental resource manage-
ment optimization.

However, for environmental models to be used appropriately in
a risk-based decision-making context, these models should include
estimates of uncertainty in important model outcomes. This un-
certainty conveys a clear understanding of the reliability of the
simulation results and the management solutions that depend on
these simulation results, providing a margin of safety to account for
imperfections in the model and data supplying it (Anderson et al.,
2015). Unfortunately, in practice, providing resource managers
with a range of possible model outcomes can raise more questions
than the modeling analysis answers. Phrases such as “How can we
manage to a range of outcomes?” or “We need a single number” are
common responses to modeling analyses presented in the context
of uncertainty. One possible solution to this conundrum is the use
of optimization under uncertainty techniques (Sahinidis, 2004).
This type of management optimization problem seeks an optimal
solution to a resource-management problem, but includes recog-
nized sources of uncertainty. In this way, the optimal solution
provides a “single answer”, but that answer includes* Corresponding author.
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uncertaintyduncertainty arising from uncertain model inputs (and
optionally observation noise) is propagated to constraints, which in
turn affects the optimal solution.

Unfortunately, while many approaches and techniques to opti-
mization under uncertainty have been proposed in the literature
(Joodavi et al., 2015; Zekri et al., 2015; Nouiri et al., 2015; Tsoukalas
and Makropoulos, 2015; Sreekanth et al., 2016; Beh et al., 2017),
few, if any, generalized (model-independent/non-intrusive) tools
exist for practitioners to apply these techniques to environmental
models (Gorelick and Zheng, 2015; Horne et al., 2016). Com-
pounding this lack of tools is the large computational burden and
high dimensionality associated with many types of environmental
modelsdespecially groundwater or integrated surface-water/
groundwater modelsdthat can preclude the application of many
approaches to optimization and optimization under uncertainty.

Herein, we present PESTPP-OPT, an efficient, model-
independent (non-intrusive) tool for optimization under uncer-
tainty. PESTPP-OPT implements the simplex algorithm (Dantzig
et al., 1955) to solve the linear programming problem and also
implements sequential linear programming problem (SLP: Ahlfeld
and Mulligan, 2000) to resolve mild nonlinearities in the relation
between decision variables and constraints arising from the nu-
merical model. We extend the work of Wagner and Gorelick (1987)
to use a Bayesian formulation of first-order, second-moment
(FOSM) uncertainty techniques to efficiently and seamlessly
(without user intervention) estimate prior or posterior uncertainty
in the constraints derived from model output, thereby propagating
model parameter and observation uncertainty to the constraints
used in the optimization process. This FOSM-based constraint un-
certainty estimation happens “on-the-fly” (programmatically and
without user intervention) and, depending on the selected settings,
requires no additional model runs.

Because PESTPP-OPT uses the familiar PEST (Doherty, 2015)/
PESTþþ (Welter et al., 2015) model-independent (non-intrusive)
framework, the existing PEST and PESTþþ user base will now be
able to easily apply these sophisticated management optimization
techniques with little additional user effort beyond typical
parameter estimation.

The following sections briefly describe the theory of SLP and
FOSM, and present an example application of PESTPP-OPT to solve a
chance-constrained integrated groundwater surface-water man-
agement problem.

2. Theory

2.1. Terminology

Parameter estimation and management optimization share
many common elements, but, in some cases, employ different
terminology, or worse, have similar terminology with differing
definitions. Therefore, we now explicitly define how we use these
terms in this paper.

In parameter estimation (PE) and uncertainty quantification
(UQ) parlance, “parameters” are uncertain model inputs (any
numeric quantity used both the simulator) that are nominated for
adjustment during history matching and/or uncertainty analysis;
“observations” in PE and UQ analyses are measured data, typically
collected from the environmental system being modeled. In man-
agement optimization parlance, following Ahlfeld et al. (2009),
“decision variables” are model inputs whose values are to be
determined by the optimization process. That is, decision variables
are some model inputs that can be controlled. Constraints are

conditions that must be satisfied by any optimal solution, including
maximum andminimum allowable values for decision variables, or,
alternatively, constraints may be derived from model output, or
both. Constraints based on model output may include simulated
groundwater levels, stream flows, and/or streamflow depletions
(Barlow and Leake, 2012; Fienen et al., 2017). Constraints may also
be derived from model output. For example, simulated differences
in model simulated states in space or time (e.g., drawdowns or
water level difference across a confining unit)dmost simulators
only output simulated states, but users can post-process these
states to calculate differences.

In PE and UQ parlance, “forecasts” are unobserved quantities of
interest derived, at least in part, from model outputs. Because
model inputs (e.g., parameters) are uncertain, so too are forecasts in
as much as a given forecast depend on the parameters. Similarly,
constraints that are derived from model output are unobserved
quantities that, because of parameter uncertainty, are also uncer-
tain. Note that observations of system states may be available at
constraint locations (e.g. water levels from an existing well).
However, the simulated response to a given management scenario
remains uncertain, and is therefore, similar to a “forecast” in a PE
and UQ analysis.

In PE and UQ parlance, the “objective function” is the functional
typically composed of differences between observations and
model-simulated equivalents. Typically, this functional is based on
the L 2 norm (sum of squares) of the differences. The focus of PE is
to minimize this functional. In management optimization, the
objective function is composed of combinations of decision vari-
ables and may either be minimized or maximized, depending on
the specific application, subject to constraints. Moreover, hereinwe
use linear programming, so that the objective function is a
weighted linear combination of decision variables.

2.2. Linear programming

Linear programming (LP) is a solution to the optimization
problem that relies on an assumption of a linear relationship be-
tween decision variables and constraints as well as an objective
function that is a linear combination of decision variables (Nocedal
andWright, 2006). Using vector notation, LP can be summarized as

minimize : cTx
subject to : Ax � b
x � 0

(1)

where x is a vector ofm decision variables, c is vector ofm objective
function coefficients, A is an n�mmatrix of constraint coefficients,
and b is a vector of n specified constraint values. Following Ahlfeld
and Mulligan (2000), herein the matrix A is called a response
matrix and is calculated, in part, by evaluating the model with the
perturbed decision variables and recording the change in con-
straints. Specifically,
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�� Ai
�
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�
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(2)

where Ai is a vector of simulated constraint values (row of A), xj is
the jth decision variable, and dxj is a small perturbation of the jth

decision variable. This formulation is similar to the finite-difference
approximation used to fill the Jacobian matrix ðJÞ of sensitivities in
many PE algorithms (e.g. Doherty, 2015; Welter et al., 2015).

Constraints in the LP process can be formed directly from
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