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a b s t r a c t

Two families of observers for discrete-time nonlinear systems are presented in this paper, whose design
is based on the Taylor approximation of the inverse of the observation map. Semiglobal convergence
results are provided under the assumption that the system observation map is a globally analytic
diffeomorphism. The performances of the observers in the two families are compared both from
theoretical and practical points of view.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of state reconstruction for nonlinear systems from
input and output measurements has been widely investigated
in the literature, and many techniques exist for the design of
asymptotic state observers. One method consists in finding a
nonlinear change of coordinates and an output injection that recast
the system into some canonical form, suitable for a linear observer
design. In the discrete-time framework, first papers dealing with
this approach are Lee and Nam (1991) and Lin and Byrnes (1995),
where autonomous systems are only considered. More recent
papers are Xiao, Kazantzis, Kravaris, and Krener (2003) and Xiao
(2006). The case of systems with input is considered by Besançon
and Bornard (1995), Besançon, Hammouri, and Benamor (1998),
Califano, Monaco, and Normand-Cyrot (2003, 2009). In general,
the appropriate coordinate transformation exists under quite
restrictive conditions and its computation is a very difficult task. An
interesting technique for the construction of observers with linear
error dynamics for systems admitting a differential/difference
representation is in Monaco, Normand-Cyrot, and Barbot (2007).
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Another approach exploits dynamic inversion of suitably defined
observation maps to achieve asymptotic state reconstruction
without the need of any coordinate transformation (Ciccarella,
Dalla Mora, & Germani, 1993, 1995). Local convergence of these
observers is proved under standard Lipschitz assumptions. The
use of the Extended Kalman Filter as a local observer has been
investigated in Boutayeb and Aubry (1999), Boutayeb, Rafaralahy,
and Darouach (1997) and Reif and Unbehauen (1999), while in
Germani and Manes (2008) the convergence of the Polynomial
Extended Kalman Filter (Germani, Manes, & Palumbo, 2005), when
used as an observer, is studied. Observers for the case of nonlinear
systems with linear measurements are considered in Abbaszadeh
and Marquez (2008), Boutayeb and Darouach (2000) and Ibrir
(2007). AnH∞ observer design approach is followed by Zemouche,
Boutayeb, and Bara (2008), Zemouche and Boutayeb (2009a,b).
Another approach is the Moving Horizon Estimation technique, as
in Kang (2006), which allows to consider also uncertainties and
disturbances, as in Alessandri, Baglietto, and Battistelli (2008).

This paper presents two families of semiglobal observers,
based on high order Taylor approximations of the inverse of the
observation map, that improve the local observers in Ciccarella
et al. (1993, 1995), based on the first order Taylor approximation.
The degree ν of the approximating polynomial defines the order
of the observer in the families. Our approach takes inspiration
from Germani, Manes, Palumbo, and Sciandrone (2006), where a
root-finding method has been developed by suitably exploiting
Taylor polynomials of degree ν > 1 to get higher convergence
rates than the Newton–Raphson method. The main feature of
the presented observer families is that, for any given bound on
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the initial observation error, the degree ν can be chosen large
enough to guarantee the convergence of the observation error
to zero at any desired exponential rate (semiglobal exponential
convergence).

The paper is organized as follows. Preliminary definitions and
notations are provided in Section 2. The formulas of the Taylor
polynomial expansion of the inverse of the observation map are
presented in Section 3. Section 4 presents two families of state
observers and the convergence theorems for the case of unforced
systems. The case of systems with input is discussed in Section 5.
Simulation results and conclusions follow.

2. Preliminaries

This paper deals with the problem of state-observers design for
nonlinear discrete-time systems of the type

x(t + 1) = f (x(t), u(t)),
y(t) = h(x(t), u(t)), t ∈ Z, (1)

where x(t) ∈ Rn is the unknown state, u(t) ∈ U ⊆ R is a known
input, and y(t) ∈ R is the measured output. f : Rn

× U → Rn is
the one-step state transition function, and h : Rn

× U → R is the
output function. Both functions f and h are assumed to be analytic.

The observer designmethodology presented in this paper relies
on the so called observation map, that is the square function that
transforms the system state at a given time t into the output
sequence in the interval [t, t + n) ⊂ Z. The formal definition of
the observation map requires the introduction of some notations.
Throughout the paper, for a given vector V ∈ U

r
⊆ Rr , the symbols

V[1:k], V[k] and V[r−k+1:r], with k < r , will denote the first k
components, the k-th component and last k components of V ,
respectively. This allows to define the r-steps state transition
functions f r(x, V ), with r ∈ N, x ∈ Rn, and V ∈ U

r
, as

f 1(x, V ) = f (x, V ), [and f 0(x) = x, ]

f r(x, V ) = f (f r−1(x, V[2:r]), V[1]), r > 1.
(2)

Alternatively, f r(x, V ) = f r−1(f (x, V[r]), V[1:r−1]).
The symbol h ◦ f r−1 will denote the function defined as

h ◦ f 0(x, V ) = h(x, V ), V ∈ U,

h ◦ f r−1(x, V ) = h(f r−1(x, V[2:r]), V[1]), V ∈ U
r
.

(3)

The n functions h ◦ f r−1(x), r = 1, . . . , n, can be stacked into a
square map z = Φ(x; V ), with V ∈ U

n
, as follows:

Φ(x; V ) =


h ◦ f n−1(x, V[1:n])

...

h ◦ f 1(x, V[n−1:n])
h(x, V[n])

 . (4)

Given the input and output sequences u(t) and y(t), let us define
the vectors Ut ∈ U

n
and Yt ∈ Rn as

Yt =


y(t + n − 1)

...
y(t + 1)
y(t)

 , Ut =


u(t + n − 1)

...
u(t + 1)
u(t)

 , (5)

so that the following relation holds for any t ∈ Z:
Yt = Φ(x(t);Ut). (6)
The function z = Φ(x; V ) defined in (4) is a square map from
x ∈ Rn to z ∈ Rn, where V ∈ U

n
is a vector of known parameters.

If such a map is invertible, then the state reconstruction from
the knowledge of the input and output sequences (Yt and Ut ) is
theoretically possible. For this reason, the following definitions are
given.

Definition 1. The map Φ : Rn
× U

n
→ Rn defined in (4) is called

the observation map of the system (1), and its Jacobian ∇xΦ(x, V )
is called the observability matrix.

Definition 2. The nonlinear system (1) with u(t) ∈ U , is said to be
uniformly observable in a subset Ω ⊆ Rn if its observation map (4)
is invertible in Ω for any V ∈ U

n
. If Ω = Rn, then the system (1)

is said to be globally observable. If U = 0, the system is said to be
drift-observable.

The inverse of the observation map is symbolically written as x =

Φ−1(z, V ).

Remark 1. The invertibility ofΦ(x; V )may depend on the set U of
admissible inputs. When U = R, uniform observability in Ω ⊂ Rn

is equivalent to observability for any input (see Gauthier, Ham-
mouri, & Othman, 1992, for continuous-time systems). This is a
rather strong property, even stronger when Ω = Rn (global uni-
form observability), because in general the inverse of a nonlin-
ear map is only locally well-defined, and often admits bifurcation
points (see e.g. Barbot, Belmouhoub, & Boutat-Baddas, 2006). How-
ever, uniform observability for any input in a subset U ⊂ R can be a
muchweaker property, becauseU can be small enough to keep out
bad inputs. In Dalla Mora, Germani and Manes (2000), it is shown
that any drift-observable system admits a bounded set U such that
the system is uniformly observable for any u(t) ∈ U .

When the uniform observability assumption for any input in U
is satisfied, the presence of the parameter V in the observation
map (4) and in the r-steps transition functions (2) and output
functions (3) does not add any theoretical complication to the state
reconstruction schemes here presented. Thus, in order to have
simpler notations, the case of unforced discrete-time systems is
considered at first:

x(t + 1) = f (x(t)),
y(t) = h(x(t)), t ∈ Z, (7)

so that f 0(x) = x and

f r+1(x) = (f ◦ f r)(x) = f (f r(x)), r ≥ 0,
h ◦ f r(x) = h(f r(x)).

(8)

The observation map takes the simpler form

Φ(x) = [h ◦ f n−1(x) · · · h ◦ f 1(x) h(x)]T , (9)

and the output sequence is a function of the state only

Yt = Φ(x(t)). (10)

Definition 3. The nonlinear system (7) is said to be observable in
a subset Ω ⊆ Rn if its observation map (9) is invertible in Ω . If
Ω = Rn, then the system (7) is said to be globally observable.

By Definition 3, a system is observable if for any t ∈ Z the output
sequence in the interval [t, t + n) univocally determines the state
x at time t , formally expressed as a function of the inverse map

x(t) = Φ−1(Yt). (11)

In (11), the current state x(t) is written as a function of future
observations. The causal computation of x(t) as a function of
current and past observations Yt−n+1 can be made in two steps
(ideal exact state reconstruction):

1a. compute the state at time t − n + 1 as

x(t − n + 1) = Φ−1(Yt−n+1), (12)

2a. compute the current state x(t) as

x(t) = f n−1(x(t − n + 1)). (13)
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