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a b s t r a c t

Land use regression (LUR) modelling is increasingly used in epidemiological studies to predict air
pollution exposure. The use of stationary measurements at a limited number of locations to build a LUR
model, however, can lead to an overestimation of its predictive abilities. We use opportunistic mobile
monitoring to gather data at a high spatial resolution to build LUR models to predict annual average
concentrations of black carbon (BC). The models explain a significant part of the variance in BC con-
centrations. However, the overall predictive performance remains low, due to input uncertainty and lack
of predictive variables that can properly capture the complex characteristics of local concentrations. We
stress the importance of using an appropriate cross-validation scheme to estimate the predictive per-
formance of the model. By using independent data for the validation and excluding those data also
during variable selection in the model building procedure, overly optimistic performance estimates are
avoided.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The urban air quality shows a large spatial variability on a small
scale, especially for traffic-related pollutants such as NOx, ultrafine
particles (UFP) and black carbon (BC) (Vardoulakis et al., 2011;
Peters et al., 2014; Wu et al., 2015). As the variation within a city
may exceed the variation between cities (Jerrett et al., 2005; Cyrys
et al., 2012), it is important to take this within-city variability into
account for accurate exposure estimation in epidemiological
studies (Hoek et al., 2008; Fruin et al., 2014). Land use regression
(LUR) models intend tomodel this small-scale within-city variation
by relating the air pollution concentration at certain locations with
predictor variables, usually obtained through geographic informa-
tion systems (GIS), holding information on surrounding land use
and traffic characteristics (Jerrett et al., 2005; Hoek et al., 2008;
Beelen et al., 2013). LUR models are increasingly used in

epidemiological studies (Eeftens et al., 2012; Beelen et al., 2014;
Dons et al., 2014; de Hoogh et al., 2014).

LUR modelling requires air quality measurements at multiple
locations across the study area. Typically, stationary monitoring is
used at 20e100 locations (Hoek et al., 2008). However, Basaga~na
et al. (2012) argue that LUR models for complex urban settings
should be based on a large number of measurement sites (> 80 in
their study). Mobile monitoring can provide an alternative way to
gather data at a high spatial resolution (Van den Bossche et al.,
2015). Some studies use a mobile platform to perform short-term
measurements at many locations (e.g. Larson et al., 2009; Merbitz
et al., 2012; Ghassoun et al., 2015; Montagne et al., 2015). Only
few studies use mobile measurements as a basis for LUR modelling.
For example, Hasenfratz et al. (2015) and Mueller et al. (2016)
present a study on the modelling of particle number concentra-
tions in Zurich using data from a tram-based mobile sensor
network. Hankey and Marshall (2015) use bicycle-based, mobile
measurements to build LUR models, and in studies of Kanaroglou
et al. (2013), Patton et al. (2014) and Weichenthal et al. (2016b),
van-based measurements are used. Mobile measurements can also
be collected in participatory and community-based campaigns.
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Volunteers can systematically collect targeted data sets, or data are
collected opportunistically during (repeated) daily activities or
trips, to provide improved estimates of spatial variability (Snyder
et al., 2013; Van den Bossche et al., 2016).

In this study, we will investigate the development of LUR
models based on opportunistic mobile measurements to predict
annual average concentrations at a high spatial resolution in the
urban environment. This case study is based on measurements
gathered by city wardens during their surveillance tasks, which
were presented in Van den Bossche et al. (2016). The measurement
campaign resulted in a higher spatial density of measurement lo-
cations compared to most LUR studies (sampling points at an
approximate resolution of 50 m along the roads). Different tech-
niques to build the LUR models, both linear and non-linear, and
different methods to select the relevant predictor variables, will be
evaluated. For the evaluation, a custom spatial cross-validation
scheme will be used to ensure a proper assessment of the predic-
tive ability of the model.

2. Materials and methods

2.1. Study location and description

The study site is the city of Antwerp, Belgium, a medium-sized
city of 480,000 inhabitants (51�120 N, 4�260 E, 985 inhabitants
km�2). The inner city (within the ring road) has an area of approx-
imately 16 km2. The study areawheremeasurements were gathered
comprises a quarter of this region (approximately 3.7 km2), and is
shown in Fig. 1. This region consists mainly of residential and
commercial areas, including main traffic roads and green areas. A
highway (the ring road) is located at the border of the study area.
There is no heavy industry located within the study area itself, but
the port of Antwerp borders the city at the north. There are no
significant differences in elevation throughout the study area.

2.2. Mobile air quality monitoring

The opportunistic mobile measurement campaign1 was carried

out with the collaboration of city wardens from July 2012 until June
2013. The Antwerp city wardens are city employees who are out-
doors for a large part of the day carrying out surveillance tours by
bicycle or on foot. These surveillance tours do not follow fixed
routes or times. Black carbon was measured using the VITO air-
Qmap platform.2 The measurement unit consisted of a micro-
aethalometer (MicroAeth Model AE51, AethLabs), a lightweight
sensor that allows to measure BC at a high (1 s) frequency, and a
GPS (Locosys Genie GT-31 GPS). The micro-aethalometer measures
the concentration of optically absorbing aerosol particles (equiva-
lent black carbon (EBC, in mg m�3) using amass-specific absorption
cross-section (MAC) of 12.47 m2 g�1 at 880 nm (Petzold et al.,
2013)). Three teams of two city wardens each were equipped
with a measurement unit, and 393 h of raw 1 s measurements were
recorded for the three teams combined (459 h of measurements
before filtering for GPS quality), spread over 110 days. Most of the
measurements were done between 10 a.m. and 16 p.m. during
working days and performed both on foot and by bike. The micro-
aethalometers have been compared several times during the
campaign to a reference monitoring station. More details on data
collection, processing and quality control can be found in Van den
Bossche et al. (2016).

2.3. Aggregated BC concentrations

As described in Van den Bossche et al. (2016), the data at 1 s
resolution were aggregated over segments of approximately 50 m
resolution along the roads (assigned to the midpoint of the corre-
sponding segment). This resulted in different passages for each
segment, where one passage is a continuous period of time during
which measurements are performed in that segment. For each
segment, an aggregated concentration level was calculated based
on all passages using a trimmed mean and temporally adjusted to
an annual average concentration. The temporal adjustment was
performed through a combination of the additive and multiplica-
tive method. More details can be found in Van den Bossche et al.
(2016). The trimmed mean used in this study was calculated as
the arithmetic mean after removing the 0.5% largest and 0.5%
smallest values (Van den Bossche et al., 2015). The aggregated and
adjusted values are the data points that will be used as the
dependent variable in the LUR models. Because no fixed routes
were followed, the number of passages was not identical for all
segments. Only those segments with at least 5 passages were used
for the models, resulting in 1457 sampling locations. Most seg-
ments were measured 9 to 27 times (interquartile range).

A few of the segments close to the ring road were removed from
the target data set, in particular, the segments located at a bridge
over the ring road. These data are not representative for the ring
road itself and those high values for the traffic variables were not
well represented within the dataset.

2.4. GIS data

Data were gathered for four categories of predictor variables:
traffic variables (traffic intensity, road length, distance to roads),
land use, population density and physical geography (urban
morphology). The elevation was not considered as predictor vari-
able. The different data sources were (i) OpenStreetMap (OSM), (ii)
Urban Atlas, (iii) Central Reference Address Database (CRAB), (iv) a
traffic model, (v) sky view factor data (open data Antwerp) and (vi)
data on biking lanes from the Province of Antwerp. These sources

Fig. 1. The different spatial zones for cross-validation. The zones are constructed as
1 � 1 km2 areas based on the UTM coordinates. Some of the zones with fewer sam-
pling locations are combined into one zone, resulting in six zones as indicated with
numbers in the figure.

1 The dataset is available upon request. 2 http://www.airqmap.com.
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