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a b s t r a c t

We present a new Genetic Programming based method to derive downscaling rules (i.e., functions or
short programs) generating realistic high-resolution fields of atmospheric state variables near the surface
given coarser-scale atmospheric information and high-resolution information on land surface properties.
Such downscaling rules can be applied in coupled subsurface-land surface-atmosphere simulations or to
generate high-resolution atmospheric input data for offline applications of land surface and subsurface
models. Multiple features of the high-resolution fields, such as the spatial distribution of subgrid-scale
variance, serve as objectives. The downscaling rules take an interpretable form and contain on
average about 5 mathematical operations. The method is applied to downscale 10 m-temperature fields
from 2.8 km to 400 m grid resolution. A large part of the spatial variability is reproduced, also in stable
nighttime situations, which generate very heterogeneous near-surface temperature fields in regions with
distinct topography.
© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

With growing computational power integrated modeling plat-
forms coupling atmospheric, land surface and subsurface models
are increasingly used to account for interactions and feedbacks
between the different components (e.g., Shrestha et al., 2014). The
feedback processes are largely driven by the turbulent exchange
fluxes of energy, moisture andmomentum at the interface between
land surface and atmosphere. The use of spatially averaged pa-
rameters or state variables at the land surface or the lower atmo-
spheric boundary layer (ABL) can introduce biases in the flux
estimation. In current atmospheric models for numerical weather
prediction, which are typically applied at scales of few kilometers,
heterogeneities at smaller scales are mostly neglected.

Subgrid-scale parameterization of the land surface like tile,
mosaic or mixture approaches significantly improve the estimation
of the surface fluxes (e.g., Avissar and Pielke,1989; Koster and Suarez,
1992; Leung and Ghan, 1995; Schlünzen and Katzfey, 2003). Shao
et al. (2001) showed that also the representation of the subgrid-
scale atmospheric heterogeneity improves the flux estimates.

The explicit subgrid approach by Seth et al. (1994) allows to
combine the subgrid representation of the land surface with
downscaled atmospheric forcings. In the explicit approach each
atmosphericmodel gridboxcoversN�N land surface columns, i.e., a
higher resolution land surface scheme is nested into a coarser res-
olution atmospheric model (see also Giorgi et al. (2003) and Ament
and Simmer (2006) for discussion). This is analogue to coupling a
coarser atmospheric model with a high-resolution land surface
model, as it is oftendone in theaforementioned integratedmodeling
platforms. This approach is feasible because of the comparatively
low computational cost of land surface and subsurface models.

Besides the potential to improve the estimation of the turbulent
exchange fluxes, downscaling of the near-surface atmospheric state
variables can provide better forcing data for land surface, subsur-
face and agricultural models. This is important as besides the tur-
bulent exchange coefficients also many processes at the earth's
surface, e.g., related to vegetation, are nonlinear. Furthermore, the
representation of runoff production or snow melt, which are
threshold dependent, would benefit from taking subscale atmo-
spheric variability into account.

Seth et al. (1994) introduced a simple atmospheric downscaling
for the global climate scale (from 3.0� to 0.5�z50 km), which for
instance corrects near-surface temperature using the model
simulated ground temperature or topographic height at the high
resolution. Fiddes and Gruber (2014) presented a more advanced
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physically based downscaling scheme, TopoSCALE, to create high-
resolution forcing data for land surface models from global
climate reanalysis (from 0.75� to �100 m), using fine-scale topog-
raphy information from a high-resolution digital elevationmodel. A
similar approach was taken by Schomburg et al. (2010, 2012), who
developed a downscaling scheme at the mesoscale (from 2.8 km to
400 m) by statistically evaluating high-resolution atmospheric
model runs. The scheme leads to improvements for certain vari-
ables (e.g., near-surface pressure) and weather conditions (e.g.,
near-surface temperature in unstable atmospheres). As processes
in the lower ABL can be complex and highly nonlinear, the condi-
tional linear regression approach used in Schomburg et al. (2010)
appears not to be sufficient to capture many of the processes
acting in the lower ABL.

In this study we introduce a more flexible approach to detect
relations (downscaling rules) that generate high-resolution atmo-
spheric fields from coarse atmospheric information and high-
resolution information on land surface characteristics. We employ
Genetic Programming (GP), a machine learning method from the
area of evolutionary computation (e.g., Koza, 1992; Banzhaf et al.,
1997). Like artificial neural networks GP allows to flexibly model
complex nonlinear and multivariate relations with the advantage
that the downscaling rules take the form of equations or program
code, which is readable, and thus can be checked for physical
consistency.

Coulibaly (2004), Liu et al. (2008) and Hashmi et al. (2011)
employed GP based methods to downscale temperature and/or
precipitation from global climate model output to a station or
catchment mean. The results were compared to the Statistical
Down-Scaling Model (SDSM) by Wilby et al. (2002). In all three
studies the GP based methodologies performed better than the
SDSM. In Coulibaly (2004) and Hashmi et al. (2011) the down-
scaling models resulting from GP and SDSM were explicitly
compared showing that the GP model not only performed better,
but also required less predictor variables. Liu et al. (2008) addi-
tionally compared the GP results against a feed forward neural net.
Both methods performed about equally well.

Unlike previous studies which employ GP for atmospheric
downscaling, we aim at the downscaling of coherent spatial fields.
To this goal we employ a multi-objective approach, because a
regression aiming solely at the minimization of the root mean
square error (RMSE) is known to underpredict variance. The multi-
objective approach allows to consider different characteristics of
the fine-scale atmospheric fields, for instance spatially distributed
variance, during the learning procedure.

This article introduces multi-objective Genetic Programming for
the downscaling of atmospheric fields. As a first application we
present the downscaling of near-surface temperature fields, which
can exhibit very complex fine-scale patterns depending on atmo-
spheric stability and thus offers a problem of sufficient complexity
for testing the method. We build upon the same data set as used by
Schomburg et al. (2010), which is introduced in Section 2. In Section
3 the methodology is explained in detail. Section 4 describes setup
and results of downscaling 10 m-temperature, which are discussed
in Section 5. Application to other atmospheric state variables, as
well as the implementation of the downscaling scheme within a
coupled modeling framework for the soil-vegetation-atmosphere
system is part of ongoing work. Details on future plans are pro-
vided in Section 6.

2. Data

The downscaling rules are derived using the output of high-
resolution simulations with the COSMO model (Baldauf et al.,
2011) provided by Schomburg et al. (2010). The simulations have

a grid spacing of 400 m and a time step of 4 s to satisfy the
Courant-Friedrich-Levy stability criterion. The domain covers
168 km � 168 km centered over the Rur catchment in western
Germany, which is the main investigation area of the Transregional
Collaborative Research Centre 32 (TR32) on ’Patterns in Soil-
Vegetation-Atmosphere-Systems’ (Vereecken et al., 2010; Simmer
et al., 2015), within which this study has been carried out. The
data set contains hourly output for 8 simulation periods with a
length of 1e2 days governed by different weather conditions (see
Table 1). We consider only the inner 112 km � 112 km of the
domain (i.e., 280 � 280 grid points) to exclude nesting effects. To
reduce computational cost we extract single days and time steps to
create our training data set. The scheme by Schomburg et al. (2010)
has been initially developed for the downscaling from 2.8 km to
400 m grid resolution. In this study we consider the same scales,
i.e., we aim at a downscaling by a factor of seven.

3. Methods

We downscale near-surface atmospheric fields by establishing a
statistical relation (downscaling rule) between the coarse atmo-
spheric model output and the high-resolution atmospheric fields
using quasi-static high-resolution land surface information. Thus,
we assume that the structure of the atmospheric boundary layer
near the surface is significantly influenced by land surface
heterogeneity.

A rule search algorithm based on Genetic Programming is set up,
which can potentially detect multivariate and nonlinear down-
scaling rules. Such rules are much less complex than running the
full 3D-model at high resolution. It is not expected that the
downscaling rules reproduce the exact high-resolution references.
Due to turbulence for instance, there will always be a remaining
component of the fine-scale fields that cannot be reconstructed.

We take a multi-objective approach that allows multiple char-
acteristics of the fine-scale fields to be incorporated during the
fitting of the regression model. Minimizing only the root mean
square error (RMSE) would result in downscaling rules predicting
the expected value of the temperature anomalies given surface
characteristics and coarse atmospheric state. Such an estimator is
known to have too small variance (e.g., Hastie et al., 2009). Instead
of aiming at predicting the expected value, we aim at downscaling
rules returning realizations from an unknown multivariate proba-
bility density function (PDF). We do not optimize solely the RMSE,
but also objectives that quantify the spatial variance on the
subgrid-scale and the cumulative density functions (CDFs) of the
full fields.

When we formulate the downscaling problem as a multi-
objective optimization problem, we face, however, the following
problems. Minimizing the sum of different objectives is problem-
atic, since they may have different units and ranges. Even with an
appropriate scaling procedure there is a risk of treating the objec-
tives unequally or getting trapped in a local minimum. Firstly, we
can never know, what is the minimum value of each objective that
can be achieved by the regression. Thus, designing an appropriate
scaling procedure is difficult and one would need to decide on the
relative importance of the different objectives in advance. Secondly,
addingmultiple, conflicting objectives very likely results in a fitness
function with multiple local minima, which makes optimization
more difficult. To avoid these problems, we have implemented
fitness calculation according to the Strength Pareto Evolutionary
Algorithm (SPEA) by Zitzler and Thiele (1999), instead of using a
single (weighted) fitness or cost function. Approaches for multi-
objective optimization like SPEA are widely used in evolutionary
computation. In SPEA the fitness calculation during the fitting
procedure is based on an intercomparison of the different models.
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