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a b s t r a c t

The objective of this study was to apply preprocessing and ensemble artificial intelligence classifiers to
forecast daily maximum ozone threshold exceedances in the Hong Kong area. Preprocessing methods,
including over-sampling, under-sampling, and the synthetic minority over-sampling technique, were
employed to address the imbalance data problem. Ensemble algorithms are proposed to improve the
classifier's accuracy. Moreover, a distance-based regional data set was generated to capture ozone
transportation characteristics. The results show that a combination of preprocessing methods and
ensemble algorithms can effectively forecast ozone threshold exceedances. Furthermore, this study ad-
vises on the relative importance of the different variables for ozone pollution prediction and confirms
that regional data facilitate better forecasting. The results of this research can be promoted by the Hong
Kong authorities for improving the existing forecasting tools. Moreover, the results can facilitate re-
searchers' selection of the appropriate techniques in their future research.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

For many years, the air pollution problem has been attracting
public attention, since it can cause serious health problems. The
United States Environmental Protection Agency (EPA) set particle
pollution (frequently referred to as particulate matter) (PM),
ground-level ozone (O3), carbonmonoxide (CO), sulfur oxides (SO2),
nitrogen oxides (NOx), and lead as ‘critical pollutants’. Among these
six pollutants, O3, which has adverse effects on public health and
agricultural yields, is one of the most dangerous pollutants (United
States Environmental Protection Agency, 2015; Salazar-Ruiz et al.,
2008; Khatibi et al., 2013; Lam et al., 2015).

To assist the control of O3 pollution, the Hong Kong Special
Administrative Region of the People 's Republic of China (HK)
government established a maximum ozone threshold of 160 mg/m3.
Ozone levels in excess of this threshold may threaten public health.
Therefore, accurate and prompt prediction of O3 concentrations
that exceed the threshold is of great importance to the

management of the public pollution warning system.
Since the 1970s, regression and auto-regressive models, such as

time series analysis, have been widely used in O3 forecasting in
many studies. However, the results suggested that traditional time
series techniques fail to forecast O3 accurately (Comrie, 1997;
Chattopadhyay and Bandyopadhyay, 2007). As a replacement,
artificial intelligence (AI) techniques emerged and proved to be
more effective for ozone prediction (Robeson and Steyn, 1990;
McCollister and Wilson, 1975). Of the AI techniques, the support
vector machine (SVM) (H�ajek and Olej, 2012; Salazar-Ruiz et al.,
2008; Wang et al., 2008; Feng et al., 2011; Yu et al., 2012; Ortiz-
García et al., 2010), artificial neural network (ANN) (Schlink et al.,
2006; Salazar-Ruiz et al., 2008; Tsai et al., 2009), and decision
tree (DT) (Zhang and Fan, 2008; Birant, 2011) are frequently
employed in the domain of pollution forecasting. However, they
often fail to accurately predict extreme concentrations and are of
limited use because of the observational limitations (Zhang et al.,
2012).

Since 2006, ensemble forecasting has begun to receive more
attention, as ensemble algorithms can improve forecasting accu-
racy and enhance the generalization capability (Zhang et al., 2012).
Among these, boosting, bagging, and stacking are the most popular
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techniques and showed promising pollution forecasting results
(Yang et al., 2010; Singh et al., 2013; Siwek and Osowski, 2012;
Debry and Mallet, 2014). However, as the ensemble models'
inherent limitation associated with the single AI models, that is, the
learning and training process, still leads to a focus on and a bias
toward to low level concentrations (majority instances), these
studies failed to forecast the “few events,” i.e., the threshold
exceedances of O3 concentrations, which constitutes an imbalance
data problem.

To circumvent this imbalance problem, researchers in the
domain of data mining proposed various methods, among which
data re-sampling (Drummond and Holte, 2003; Chawla et al., 2004;
Sun et al., 2009; Zhao et al., 2014), cost-sensitive learning (Lu and
Wang, 2008; Tsai et al., 2009; Fontes et al., 2014), and algorithm
modifications (L�opez et al., 2012; Sun et al., 2009) are widely
applied. These studies proved the effectiveness of cost-sensitive
and algorithm modification methods, but preprocessing methods
were never discussed. Nevertheless, the application of a pre-
processing technique to ensemble learning algorithms has proved
to be effective in the data mining domain (Galar et al., 2012).

Furthermore, the ubiquity of local ozone results from the reac-
tion of its precursors, such as NOx, NO2, and VOC, under certain
meteorological conditions. These precursors are the consequences
of anthropogenic emissions associated with transportation, in-
dustry activities, biomass burning, fossil fuel refinement, and dis-
tribution (Stoji�c et al., 2015). However, the ozone concentrations at
local area are, probably, influenced by other factors, such as
pollution transportation.

In such case, the use of both local and regional pollution data
could benefit forecasting, which would help to enforce local
pollution control actions and efficient abatement strategies in order
to avoid a situation where all the cities are affected. Regional
models, such as the Community Multiscale Air Quality (CMAQ)
model and the urban atmospheric dispersion model (DAUMOD),
were proposed in previous studies (Rojas, 2014; Liu et al., 2010).
Ozone dispersion was considered; however, the computation cost
of these models is high or they are not adequate for application in
urban areas that present severe photochemical pollution condi-
tions. AI, conversely, with the merits of fast computation and ca-
pacity to handle data that include complex photochemical
reactions, has been applied in real-time and local ozone fore-
casting; nevertheless, the regional factor considered in previous
studies was overlooked (Zhang et al., 2012).

In summary, in this study we determined whether a combina-
tion of preprocessing methods and ensemble AI techniques can
solve the imbalance class problem and improve the classifier's ac-
curacy in the field of forecasting daily maximum ozone threshold
exceedances. Meanwhile, regional factors were considered by using
a regional scale data set and assessing its empirical relevance.

The remaining parts of this paper are as follows. In the second
part, the study area, data source, ozone characteristics, variables
selection, re-sampling, and the AI methodologies used in this study
are introduced. In the third part, the performances of the classifiers
are compared, the importance of the variables is analyzed, the key
factors influencing the ozone level are identified, and the ozone
formation pattern in the selected area is specified. A comparison
between regression models and classifier models is also presented.
The final part summarizes the results of this study.

2. Research design

2.1. Study area and data collection

HK is located on the south coast of mainland China, close to the
PRD area, which is one of the most developed in China.

In order to safeguard the health and well-being of the com-
munity and to build HK as a global and green city providing a high
quality of life, the HK government implemented a wide range of
measures to control local emissions from motor vehicles, shipping
companies, power plants, and industrial and commercial processes.
In addition, the government established a policy that the daily
average ozone level should not exceed 160 mg/m3 more than nine
times per year.

The HK air pollution monitoring network contains 15 fixed
monitoring stations: 12 general stations and 3 roadside stations
(Fig. 1). The abbreviations of the stations can be found in Table 1.
The hourly records of carbon monoxide (CO), fine suspended par-
ticulates (FSP), nitrogen dioxide (NO), nitrogen oxide (NOx), ozone
(O3), respirable suspended particulates (RSP), and sulfur dioxide
(SO2) are provided by the Environmental Protection Department
(EPD) of HK. The data can be downloaded free of charge from the
EPD official Website (EPD, 2014). The HK Observatory (HKO) offers
hourly meteorological data from 42 meteorological stations, such
as temperature (TMP), relative humidity (RH), and wind direction
(WDR). The meteorological data can be found at the Website of the
HKO (HKO, 2014).

2.2. Characteristics of ozone concentrations

Fig. 2 illustrates that the number of industries is not consistent
with the O3 threshold exceedances at the local area (district) level
in HK. For example, the number of O3 exceedances in Tusen Wan
(TW) and Kwai Chung (KC), which contain the highest number of
manufacturing establishments, is relatively low. Conversely, the
pollution levels in areas with a small number of manufacturers,
such as Yue Long (YL) and Sha Tin (ST), are high.

Furthermore, HK is near one of the most developed areas, the
Pearl River Delta (PRD), in China. The pollution from this remote
emission source probably contributes to the local ozone formation.
Fig. 3 presents the hourly O3 concentration levels from October 5th
to October 7th, 2008 at the TW and YL stations. YL is the nearest
monitoring station to the PRD area. During this period, the wind
direction at the YL station was between 270 and 315�. The distance
between TW and YL is 12.5 km. The maximum wind speed was
11m/s, the minimumwas 0.7m/s, and the averagewas around 5m/
s. In Fig. 3 it can be seen that the time of the O3 peak level at the YL
station is one to two hours in advance of that at the TW station.
Therefore, the main responsibility for O3 formation at TW is O3
transportation rather than the local industrial activities at TW,
whichmeans that the pollution from industry in local areas in HK is
not the only source for local O3 formation. Thus, global factors, such
as O3 transportation, could play a significant role in O3 pollution
forecasting.

The diurnal variations in the average ozone level in July and
October, at the TW, Tung Chung (TC), Kwai Chung (KC), and YL
monitoring stations are given in Fig. 4. The ozone concentration
levels at these stations demonstrate a consistent pattern in July,
which is characterized by one peak in mid-afternoon, between
14:00 and 16:00, and two valleys between 06:00 and 08:00 and
after 20:00, remaining stable at a low level from 00:00 to 05:00. In
October, the ozone levels increased significantly at these four sta-
tions. However, the pattern observed during this period was
different from that observed in July, when one peak appeared
during the day. In October, two peaks appeared: from 03:00 to
06:00 and from 14:00 to 17:00.

Moreover, Fig. 5 shows the frequency of the days on which the
daily maximum ozone level occurred at the corresponding time of
the day. The x axis represents the time of day and the y axis rep-
resents the frequency at which the daily maximum ozone occurred
at the corresponding time. Although the average ozone level
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