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a b s t r a c t

Air pollution in atmosphere derives from complex non-linear relationships, involving anthropogenic and
biogenic precursor emissions. Due to this complexity, Decision Support Systems (DSSs) are important
tools to help Environmental Authorities to control/improve air quality, reducing human and ecosystems
pollution impacts. DSSs implementing cost-effective or multi-objective methodologies require fast air
quality models, able to properly describe the relations between emissions and air quality indexes. These,
namely surrogate models (SM), are identified processing deterministic model simulation data. In this
work, the Lazy Learning technique has been applied to reproduce the relations linking precursor
emissions and pollutant concentrations. Since computational time has to be minimized without losing
precision and accuracy, tests aimed at reducing the amount of input data have been performed on a case
study over Lombardia Region in Northern Italy.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

According to World Health Organization (WHO, 2008), partic-
ulate matter (PM) is the pollutant that most affects population's
health. PM pollution can cause acute and chronic diseases to res-
piratory (asthma, bronchitis, allergies, tumors) and cardiovascular
systems (worsening of cardiac symptoms) (Seaton et al., 1995). In
addition to the effects on human health, PM can also affect eco-
systems by interfering with photosynthesis and inhibiting the ex-
change of CO2 with atmosphere. Anthropogenic emissions of
various precursors interact with biogenic (natural) emissions, be-
tween each other, with local meteorology and on emissions and
meteorology of surrounding areas, resulting in time and space
varying PM concentration levels. The complexity of the problem
increases further due to the nonlinearity of the physical and
chemical reactions involving precursors such as volatile organic
compounds (VOC), nitrogen oxides (NOx), ammonia (NH3), pri-
mary particulate matter (PM) and sulfur dioxide (SO2), leading to
the formation of so-called ‘secondary particulate matter’. These
extremely intricate dynamics are extensively represented by the
complexity of physically distributed multiphase models (Zannetti
(2003)).

To deal with the complexity of the issue, decision makers need
tools to help them planning the decisions required to improve air

quality. That is why decision support systems (DSS) have been
developed to guide towards political emission reduction strategies,
in order to minimize, at the same time, atmospheric particulate
matter concentrations and the costs related to reduction policies.

One of the main challenges in the formalization and solution of
an air quality planning problem is the description of the link be-
tween precursor emissions and PM concentrations. This relation-
ship can be simulated by means of multiphase deterministic 3D
modeling systems, describing chemical and physical phenomena
involved in pollutant formation and accumulation (Sokhi et al.
(2006), Cuvelier et al. (2007); Carnevale et al. (2008a); Finzi et al.
(2000)). These models are usually applied to evaluate the effects
of given emission reduction measures (Carnevale et al., 2008b).
They are however unsuitable to solve the inverse problems such as
determining a set of measures to reduce an indicator below a
prescribed level at minimum cost or where to invest more effec-
tively to achieve the maximum air quality improvement within a
given budget. Finding a solution to these problems requires the
application of cost-effectiveness (Mediavilla-Sahagún and
ApSimon (2003); Carlson et al. (2004)) or multi-objective ap-
proaches (Pisoni et al. (2008)). The first of these approaches is
based on the minimization of an air pollution index, considering
the cost as a constraint, while, in the second one, an objective
function, composed by an air pollution index and a cost index, must
be minimized by varying the application rates of defined emission
reduction measures. These approaches require thousands of model
runs to iteratively evaluate the impact of decision changes on air* Corresponding author.
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quality and thus, using the above mentioned 3D air quality models
would require an unacceptable amount of time. That is why the
identification of surrogate models, synthesizing the precursor
emission-PM concentration relationship, is needed (Castelletti et al.
(2012)). In the literature, source-receptor functions have been
described by means of ozone isopleths (Shih et al., 1998), or with
reduced form models such as (a) simplified photochemical models,
applying semi-empirical relations calibrated with experimental
data (Venkatram et al., 1994), and (b) statistical models, identified
through the results of 3D Chemical Transport Models (Friedrich and
Reis (2000), Ryoke et al. (2000); Guariso et al. (2004)).

The most common approach, on a continental and national
scale, is to describe the air quality indexes using linear models (e.g.
Clappier et al. (2015); Fruergaard et al. (2010); Sch€opp et al. (1998)).
At a regional and local level, because of the impact of the non-
linearities involved, also non-linear models have been applied
(Guariso et al. (2004)), among which are included models based on
Artificial Neural Networks (e.g. in Corani (2005); Carnevale et al.
(2012); Pisoni et al. (2008)). Since LL has the ability to reproduce
both linear and non-linear relations, it can be applied to the
problem as a suitable and flexible technique. To emphasize the
difference between this approach and traditional methods, with
regard to the type of data representation of the phenomenon under
study, it is used to refer to Lazy Learning with the expression
“memory-based learning”, opposed to “model-based methods”.
Another criterion by which it is possible to distinguish the tradi-
tional methods from Lazy Learning, concerns the concept of the
model. If traditional methods reconstruct, from a series of data, a
global model of the given function, the Lazy Learning approach
goes beyond the concept of locality and provides no explicit rep-
resentation of the function, but it takes the form of an algorithm
designed to extract a prediction from an example database. In the
first case, we could say that the goal is the estimation of a function,
while, in the second case, the estimation is limited to the result of a
function in a very specific point.

Themain objective of this work is therefore to identify surrogate
models for air quality control, that are able to correctly describe the
relationship between emissions and air quality indexes on a
regional scale. Among the models that can be applied in this
context, there are artificial neural networks (ANNs), used to
describe the non-linear relations between the control variables and
the indexes of pollution (Carnevale et al., 2012), and Lazy Learning
(LL), which is a learning technique involving the use of polynomial
models whose parameters vary on the basis of the input values for
each air quality index evaluation request. This technique has
already been applied in Corani (2005) to the Lombardy Region
domain, next to artificial neural networks, for air quality prediction.
Another work dealing with the identification of surrogate models
for Lombardy Region, for air pollution forecasting, can be found in
Pisoni et al. (2009). This paper is structured as follows: in the first
section, Materials and Methods adopted are described and Lazy
Learning technique is introduced; then input and output datasets
are presented and, finally, a description of the tests performed to
evaluate the performances of Lazy Learning models is given for a
case study and the results obtained are shown. Finally some con-
clusions are drawn.

2. Materials and methods

2.1. The decision support system

The decision problem for which LL surrogate models have been
developed, can be formalized as a multi-objective problem in
which, in a given domain, an Air Quality Index (AQI), representing
the impacts of emission reduction measures and their

implementation costs (C) should be minimized, while satisfying a
set of constraints (Carnevale et al. (2008c)). Due to the non-linear
relationships linking the precursors emissions to the pollutant
concentrations (and related AQI), the problem is both non-linear
and bi-objective. So, this can be formalized as a non-linear multi-
objective optimization problem as follows:

min
q2Q

JðqÞ ¼ min
q2Q

½AQIðEðqÞÞ; ICIðqÞ� (1)

where:

� AQI is an Air Quality Index, depending on an emission scenario
(E(q));

� ICI is the Internal Cost Index, namely the policy cost;
� q are the decision variables of the problem. q values represent
the application rates of the different measures considered;

� Q is the set of applicable q values.

In this context, a fast and accurate computation of the AQI with
respect to emission changes is a key problem. Thus, the focus of this
work is to apply LL to compute the relationship linking, in partic-
ular, PM10 concentrations and PM10 precursors (NOx, VOC, NH3, SO2,
primary PM10) emissions.

2.2. Lazy Learning

Lazy Learning indicates the name of a family of learning
methods that differ from traditional ones because they miss a real
model identification phase distinguished from a validation phase
(Birattari et al. (1999); Corani (2005)). A lazy method retards the
parameter estimation until an output value computation is
required. The demand is met by locally interpolating a set of ex-
amples according to a measure of distance. Each evaluation,
therefore, requires a local procedure in the data space, which is
composed of a structural identification phase and the parameter
identification itself. The structural identification includes, among
other things, the selection of a local approximation family, of a
metric, which is a criterion used to evaluate the most significant
examples, and the bandwidth, which indicates the region size in
which the data is correctly modeled by members of the chosen
approximation family. This phase can be performed statically at the
beginning of the work or dynamically during the computation. The
parameter identification consist in the optimization of the local
approximation parameters.

The size of the region (centered in the value of interest), which is
considered for the estimation of the local model, is called band-
width. The larger is the bandwidth, the greater is the number of
considered examples. The bandwidth choice has to be carried out
together with the function family choice aiming to produce an es-
timate as uniform as possible, avoiding the introduction of an
excessive distortion, and that is therefore able to grasp the rela-
tionship between the input and the output.

2.2.1. The family of local approximations
To implement Lazy Learning, as stated before, a function

belonging to a parametric family is required to approximate the
regression function. The local approximation must be linear in the
parameters, allowing a faster identification and enabling the use of
instruments applicable only on linear models. Generally, an
approximation family of p-degree polynomials is considered, thus
the choice of the family is reduced to the choice of the polynomial
degree. This choice, is affected by the trade-off between bias and
variance. With the same number of samples available for identifi-
cation, polynomials of high degree are able to adapt better to the
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