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a b s t r a c t

There are increasing calls to audit decision-support models used for environmental policy to ensure that
they correspond with the reality facing policy makers. Modelers can establish correspondence by
providing empirical evidence of real-world behavior that their models skillfully simulate. Since real-
world behaviordespecially in environmental systemsdis often complex, credibly modeling underlying
dynamics is essential. We present a pre-modeling diagnostic framework based on Nonlinear Time Series
(NLTS) methods for reconstructing real-world environmental dynamics from observed data. The
framework is illustrated with a case study of saltwater intrusion into coastal wetlands in Everglades
National Park, Florida, USA. We propose that environmental modelers test for systematic dynamic
behavior in observed data before resorting to conventional stochastic exploratory approaches unable to
detect this valuable information. Reconstructed data dynamics can be used, along with other expert
information, as a rigorous benchmark to guide specification and testing of environmental decision-
support models corresponding with real-world behavior.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Real-world environmental systems are complex, ever-changing,
and beyond anyone's capacity to model closely. Despite this, poli-
cymakers rely on decision-support models to regulate real-world
environmental systems. Faulty model representations lead to
ineffective and wasteful policies (Saltelli and Funtowitz, 2014).
Consequently, there are increasing calls to review decision-support
models used for public policy (Saltelli and Funtowitz, 2014; Oreskes
et al., 1994). For example, the European Commission's Joint
Research Centre formally audits models used in impact assess-
ments of EU initiatives, legislation, and policy (Joint Research
Centre).

If modelers are required to demonstrate correspondence of their
models with real-world behaviordas recommended by Oreskes et
al. (1994) and Saltelli and Funtowitz (2014)dwhat is a reasonable
burden of proof? The literature is clear that modelers cannot be
reasonably required to verify their models as accurate representa-
tions of reality since verification is a logical impossibility. Moreover,

demonstrating a ‘good fit’ between model output and observed
data does not constitute validation since the possibility remains
that other models with very different structures and representa-
tions of reality can be parameterized to provide good fits (Oreskes
et al., 1994; Rykiel, 1996; Hornberger and Spear, 1981). Because
real-world environmental systems are in a constant state of flux,
we propose that a reasonable burden of proof would require
auditing modelers to present persuasive empirical evidence of real-
world dynamic behavior that their models skillfully simulate.

What constitutes persuasive evidence of real-world dynamic
behavior? Most would agree that observed data provide an
essential portal to real-world environmental systems to which
there is only limited access. Evidence of real-world dynamic
behavior must be drawn somehow from data that often exhibit a
highly volatile, irregular, and random appearance.

Past work in the environmental and resource management
literature presumes that irregular data reflect two major sources of
uncertainty: (1) ‘Real’ uncertainty due to the inherent randomness
and natural variation of real-world biophysical processes, and (2)
‘Perceived’ uncertainty due to decision-maker's limited perceptions
of reality (Uusitalo et al., 2015; Feder,1979; Dixon and Howitt,1980;
Johnson and Pasour, 1981). Typically, stochastic decision-support* Corresponding author.
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models are believed to be required to capture this management
uncertainty (Uusitalo et al., 2015), while deterministic methods are
believed to ignore or assume away this uncertainty, and thus
incapable of representing risk-responsive management behavior
(Karp, 1987).

Contrary to this common presumption, principles of random-
nessdset out in the philosophy of science literaturedreveal that
random-appearing data are not evidence that stochastic decision-
support models are required to model uncertainty (Horan, 1994;
Huffaker, 1998). Stochastic modeling is required only when real-
world processes are ‘physically random’ (indeterministic). Since
indeterministic processes are irreducibly probabilistic, causal re-
lationships do not exist to support deterministic formulations.
Alternatively, deterministic modeling is feasible when real-world
processes are physically nonrandom (deterministic). Determin-
istic processes are governed by laws such that, given them, nothing
else can happen. Importantly, apparent ‘mathematically random’

process output can be generated by both indeterministic and
deterministic processes. Indeed, breakthroughs in nonlinear dy-
namics demonstrate that irregular and apparently-random dy-
namic behavior can emerge endogenously from deterministic, low-
dimensional and nonlinear interactions among system variables
(Glendinning, 1994; Medio, 1993). Equally importantly, one cannot
work backward from observing mathematically random output to
prove whether it was generated by an indeterministic or deter-
ministic process.

In sum, random-appearing environmental data are not evidence
of indeterministic biophysical processes requiring stochastic
modeling. The interesting possibility remains that deterministic
decision-support models might generate observed uncertainty
endogenously. In this paper, we propose a pre-modeling diagnostic
framework to empirically test observed data for this possibility. The
framework is based on Nonlinear Time Series (NLTS) method-
sddeveloped in mathematical physicsdthat reconstruct system
dynamics from time-series data on a single variable (Schreiber,
1999). The NLTS framework extends Larsen et al. (2014) who pro-
posed an exploratory approach inwhichmodelers experiment with

simple nonlinear deterministic structures to find those capable of
generating complex observed environmental dynamics (Larsen
et al., 2014). We address the open question of how to diagnose
whether real-world environmental dynamics are nonlinear and
deterministic in the first place. NLTS data diagnostics provide
mathematically and statistically rigorous evidence of real-world
dynamic behavior, and can guide specification and testing of
deterministic environmental decision-support models corre-
sponding with diagnosed behavior.

We present an intuitive description of each component of the
proposed NLTS data diagnostics framework, and illustrate it with a
case study of saltwater intrusion into coastal wetlands in Ever-
glades National Park, Florida, USA.

2. Framework for NTLS pre-modeling data diagnostics and
data-informed modeling

The proposed NLTS diagnostic framework is summarized in
Fig. 1. In a nutshell, we first apply Singular Spectrum Analysis (SSA)
(Elsner and Tsonsis, 2010; Ghil et al., 2002; Golyandina et al.,
2001)da signal processing techniquedto separate an observed
time series into signal (structured variation) and noise (unstruc-
tured variation). SSA is a data-adaptive signal processing approach
that can accommodate highly irregular (anharmonic and poten-
tially non-sinusoidal) oscillations in signals (Elsner and Tsonsis,
2010; Ghil et al., 2002; Golyandina et al., 2001; Vautard, 1999).
When the time series is converted to anomalies from themean, and
the Toeplitzmethod of SSA is applied, signal strength is measured as
the fraction of variation explained in the observed time series from
its mean (Ghil et al., 2002; Golyandina et al., 2001). We test a suf-
ficiently strong signal for low-dimensional nonlinear dynamic
structure with Phase Space Reconstruction (Schreiber, 1999; Kantz
and Schreiber, 1997) and Surrogate Data methods (Theiler et al.,
1992). A low dimensional nonlinear dynamic is defined as driven
by a small number (low-dimension) of nonlinear components. We
propose a novel application of Extreme Value Statistics (Katz, 2010)
to model noise separated from an observed time series

Fig. 1. Framework for NLTS pre-modeling data diagnostics and data-driven modeling. We first separate an observed time series into signal (structured variation) and noise (un-
structured variation) components, and use the separated signal to reconstruct the dynamics of the real-world system generating it. We test whether empirically-detected dynamics
are deterministic, low-dimensional, and nonlinear, and then whether attractors reconstructed frommultiple observed signals are causally interrelated. We apply this information to
simulate empirically-detected dynamics with a phenomenological (data-driven) model composed of polynomial ordinary differential equations. We complete the diagnostics by
modeling unstructured noise separated from the observed time series probabilistically with Return-level Plots. These data diagnostics inform the structure of mechanistic models
capable of simulating real-world system dynamics.
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