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a b s t r a c t

Efficient parameter identification is an important issue for mechanistic agro-hydrological models with a
complex and nonlinear property. In this study, we presented an efficient global methodology of sensi-
tivity analysis and parameter estimation for a physically-based agro-hydrological model (SWAP-EPIC).
The LH-OAT based module and the modified-MGA based module were developed for parameter sensi-
tivity analysis and inverse estimation, respectively. In addition, a new solute transport module with
numerically stable schemes was developed for ensuring stability of SWAP-EPIC. This global method was
tested and validated with a two-year dataset in a wheat growing field. Fourteen parameters out of the
forty-nine total input parameters were identified as the sensitive parameters. These parameters were
first inversely calibrated by using a numerical case, and then the inverse calibration was performed for
the real field experimental case. Our research indicates that the proposed global method performs
successfully to find and constrain the highly sensitive parameters efficiently that can facilitate applica-
tion of the SWAP-EPIC model.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Agro-hydrological models have been an important tool for
supporting decision making in the development of agricultural
water management strategies. Since the physical description and
prediction of hydrological, chemical and biological processes at
field by some physically-based or mechanistic models are highly
valuable, these models, such as SWAP (van Dam et al., 1997) and
HYDRUS (�Sim�unek et al., 1997), are frequently used. Most of them
are based on the numerical solution of Richards equation for var-
iably saturated water flow and on analytical or numerical solution
of advection-dispersion equation. Compared with the simple
models (i.e. using lumped or tipping-bucket approach, e.g. SIM-
dualKc, AquaCrop, CERES and EPIC), these mechanistic models can
simulate multi-processes of soil water flow, solute and heat

transport, and crop growth in great detail, and be suitable for some
more complicated conditions (Ranatunga et al., 2008; van Dam
et al., 2008; Xu et al., 2013). However, these models often contain
more number of parameters, and have complex, dynamic, and
nonlinear properties. Moreover, more functions have been added
involving hysteresis, mobile-immobile flow,macropore flow, multi-
species transport and reaction, and so on. These may result in a
more severe problem of over-parameterization. Hence, the
parameter identification becomes a major and urgent problem for
agro-environmental prediction and future model use (Ines and
Mohanty, 2008; W€ohling et al., 2008; Della Peruta et al., 2014).
An efficient identification of the sensitive and important parame-
ters and the subsequent parameter estimation would be very
helpful for the future use of physically-based agro-hydrological
models.

Parameter sensitivity analysis (SA) is a prerequisite step in the
model-building process (Campolongo et al., 2007). The SA method
identifies parameters that do or not have a significant impact on
model simulation of real world observations for specific farmlands
(van Griensven et al., 2006) and is critical for reducing the number
of parameters required in model validation (Hamby, 1994).
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Generally, SA can be divided into two different schools: the local SA
school and the global one (Saltelli et al., 1999). In the first approach,
the local response of model output is obtained by varying the pa-
rameters one at a time while holding the others fixed to certain
nominal values. This approach has been adopted by some studies
because of its easy application. Yet, local SA methods have the
known limitations of linearity and normality assumptions and local
variations. For complex non-linear models, only global sensitivity
analysis (GSA) methods are able to provide relevant information on
the sensitivity of model outputs to the whole range of model pa-
rameters (Varella et al., 2010). In recent years, many studies have
focused on the GSA methods for identifying the important pa-
rameters as well as distinguishing the effects of different input
conditions (Wesseling et al., 1998; Cariboni et al., 2007; Saltelli and
Annoni, 2010; DeJonge et al., 2012; Zhao et al., 2014; Neelam and
Mohanty, 2015; Hu et al., 2015; Pianosi et al., 2015). Typical suc-
cessful applications include the methods of RSA (Yang, 2011),
extended FAST (Varella et al., 2010), Sobol' (Nossent et al., 2011) and
LH-OAT (van Griensven et al., 2006) in the related hydrological and
crop models. The choice of the sample size and of the threshold for
the identification of insensitive input factors was also preliminarily
investigated for GSA methods (Yang, 2011; Sarrazin et al., 2016).
Although different sensitivity techniques exist, each of themwould
result in a slightly different sensitivity ranking for the important
parameters near the top of the ranking list. In general, the practi-
cality of the method depends on the calculation ease and the
desired usefulness of results (Hamby, 1994).

Parameter estimation is an essential way of calibrating a
model, which is also important to the accurate prediction of agro-
hydrological processes. Different approaches have been applied
and may be classified as two main types, i.e., trial-and-error
method (manual) and inverse optimization method (automatic).
The former has been widely applied because of its simple concept
and easy application (Xu et al., 2013). It is very suitable to the
simple models with less parameters and complexity, such as when
applying to the SimDualKc and AquaCrop models (Paredes et al.,
2014). However, the trial-and-error method is often cumber-
some and time-consuming when applying to the physically
mechanistic models, especially for layered soil-profile and
complicated field conditions (Jacques et al., 2002). Hence, in
addition to the subjectivity of the trial-and-error method, there
have also been a large number of research studies on its alter-
native: automatic inverse optimization approaches for model
calibration. These algorithms may be classified as local and global
search methods. The local method, using an iterative search
starting from a single arbitrary initial point, may often prema-
turely terminate the search and therefore present a lower chance
to find a single unique solution, such as the well-known Gauss-
Marquardt-Levenberg algorithm used by PEST (W€ohling et al.,
2008; Malone et al., 2010). This inspires the application of global
parameter estimation (GPE) methods in the field of vadose zone
hydrology, e.g., genetic algorithms (Ines and Droogers, 2002; Ines
and Mohanty, 2008; Shin et al., 2012), ant-colony optimization
(Abbaspour et al., 2001), Ensemble Kalman Filter (Evensen, 2003)
and shuffled complex methods (Duan et al., 1994). In the past, the
inverse optimization of parameters of soil hydraulic properties as
well as the related well-posedness, uniqueness and the stability
are extensively studied related to the physically-based models
(Kool et al., 1987; �Sim�unek and van Genuchten, 1996; Ines and
Droogers, 2002; Shin et al., 2012). The inverse estimation of root
water uptake parameters is also carried out (Hupet et al., 2003). In
contrast, very few research studies extend to simultaneously
consider the solute fate simulation and its parameter estimation
(Jacques et al., 2002; Xu et al., 2012). Note that they are of
importance for the accurate agro-hydrological modeling in salt-

affected irrigated areas, where the ignorance of solute transport
would lead to errors in the inverse parameter estimation. Uncer-
tainty analysis is also applied in watershed hydrological modeling
(Yang et al., 2008), but only a few cases are related to the detailed
and complicated field scale studies (Shin et al., 2012; Shafiei et al.,
2014).

To our knowledge, few studies have reported the development
of both parameter sensitivity analysis and inverse estimation for
the complicated physically-based agro-hydrological models. The
general purpose of this study was to investigate the global method
of sensitivity analysis in conjunction with inverse parameter esti-
mation for effectively identifying parameters of a mechanistic agro-
hydrological model (SWAP-EPIC). SWAP-EPIC is modified version of
the well-known SWAP model, proposed by Xu et al. (2013). A GSA
module and a GPE module were respectively developed for SWAP-
EPIC model to perform sensitivity analysis and estimation of model
parameters. An efficient Latin Hypercube One-factor-At-a-Time
(LH-OAT) method was adopted to construct the GSA module. The
GPE module was then developed based on the genetic algorithm
(GA). Meanwhile, to avoid the problem of numerical instability, a
new solute transport module was developed with the fully implicit
and Crank-Nicholson difference schemes. Finally, the proposed
global method for sensitivity analysis and parameter estimation
was tested and verified using the field experiment datasets in
Huinong experimental site, Qingtongxia Irrigation District of the
upper Yellow River basin, Northwest China. The methodology
described in this study would help increase the efficiency of
parameter identification for the complicated agro-hydrological
model and would also help understand the relationship between
different processes.

2. Materials and methods

2.1. Model description

2.1.1. Agro-hydrological simulation model: updated SWAP-EPIC
By coupling the SWAP (Soil-Water-Atmosphere-Plant) model

(Kroes and van Dam, 2003) and the EPIC crop growth module
(Williams et al., 1989), Xu et al. (2013) proposed an agro-
hydrological simulation model SWAP-EPIC. This model had
been used to evaluate soil water flow, solute transport, crop
growth, and water productivity in Heihe River basin (Jiang et al.,
2015) and Yellow River basin (Xu et al., 2013, 2015). However,
based on our experience, the numerical solution of solute
transport is not stable enough in original SWAP-EPIC with the
explicit finite-difference scheme, because the time step should
meet the stability criterion for ensuring stability (van Genuchten
and Wierenga, 1974). When the size of time step exceeds a limit
and stability criterion is not satisfied, the numerical errors in the
solution are amplified as the time marches forward, leading to an
invalid or unstable solution (Zheng and Bennett, 2002). Accord-
ing to our experience, this caused very large numerical errors and
mass imbalance for salinity problems in SWAP-EPIC, which was
prone to happen in GSA and GPE modeling with a large range of
parameter changes (Xu et al., 2012, 2013). Subsequently, it would
lead to the crash of GSA simulation and efficiency reduction for
GPE simulation. Therefore, in this study, we developed a new
solute transport module optionally using the fully implicit or
Crank-Nicholson finite-difference scheme to replace the original
one in the updated version of SWAP-EPIC. It could indeed
improve the model stability and make the calculation much
faster. Main processes of the modified SWAP-EPIC model are
described below.
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