
A comparison of two Bayesian approaches for uncertainty
quantification

Thierry A. Mara a, *, Frederick Delay b, François Lehmann b, Anis Younes b, c

a PIMENT, EA 4518, Universit�e de La R�eunion, FST, 15 Avenue Ren�e Cassin, 97715 Saint-Denis, Reunion
b LHyGeS, UMR-CNRS 7517, Universit�e de Strasbourg/EOST, 1 rue Blessig, 67084 Strasbourg, France
c IRD UMR LISAH, F-92761 Montpellier, France

a r t i c l e i n f o

Article history:
Received 22 September 2015
Received in revised form
8 April 2016
Accepted 8 April 2016

Keywords:
Bayesian parameter estimation
Parameter uncertainty
Predictive uncertainty
MCPD sampler
DREAM(ZS)

MCMC
Soil hydraulic parameter identification

a b s t r a c t

Statistical calibration of model parameters conditioned on observations is performed in a Bayesian
framework by evaluating the joint posterior probability density function (pdf) of the parameters. The
posterior pdf is very often inferred by sampling the parameters with Markov Chain Monte Carlo (MCMC)
algorithms. Recently, an alternative technique to calculate the so-called Maximal Conditional Posterior
Distribution (MCPD) appeared. This technique infers the individual probability distribution of a given
parameter under the condition that the other parameters of the model are optimal. Whereas the MCMC
approach samples probable draws of the parameters, the MCPD samples the most probable draws when
one of the parameters is set at various prescribed values. In this study, the results of a user-friendly
MCMC sampler called DREAM(ZS) and those of the MCPD sampler are compared. The differences be-
tween the two approaches are highlighted before running a comparison inferring two analytical dis-
tributions with collinearity and multimodality. Then, the performances of both samplers are compared
on an artificial multistep outflow experiment from which the soil hydraulic parameters are inferred. The
results show that parameter and predictive uncertainties can be accurately assessed with both the MCMC
and MCPD approaches.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The validation of computer models is an essential task to in-
crease their credibility. One of the most important exercises in the
validation framework is to check whether the computer model
adequately represents reality (Bayarri et al., 2007). This is achieved
by comparing model predictions to observation data. This exercise
generally leads to model calibration because the model parameters
are usually poorly known a priori (i.e. before collecting data). Good
practice in calibration of computer models consists of searching for
all parameter values that satisfactorily fit the data, thus deter-
mining their plausible range of uncertainty. This can be achieved in
a Bayesian framework in which the prior knowledge about the
model and the observed data are merged to define the joint pos-
terior probability distribution function (pdf) of the parameters. The
issue is then to assess the joint posterior pdf.

The inference of model parameter posterior pdf by means of

Markov chain Monte Carlo (MCMC) sampling techniques
(Metropolis et al., 1953; Hastings, 1970) has received much atten-
tion in the last two decades. MCMC explores the region of plausible
values in the parameter space and provides successive parameter
draws directly sampled from the target joint pdf. Some selection
criteria are used to ensure that the successive draws in the chain
improve. This means that, throughout the sampling process,
probable draws with respect to the target distribution are more
likely drawn. Many developments and improvements have been
proposed to accelerate MCMC convergence.

Grenander and Miller (1994) developed the Langevin MCMC,
which accelerates the convergence of the chains by exploiting the
Jacobian of the target distribution. This MCMC sampler may require
that the computer model provide the local sensitivities to compute
the Jacobian of the target distribution. In practice, modelers
generally estimate the gradient by finite differences via a surrogate
or coarse-scale model to alleviate the computational burden (see
for instance, Dostert et al., 2009; Angelikopoulos et al., 2015).
Haario et al. (2006) developed the Delayed Rejection Adaptive
Metropolis (DRAM), an algorithm that increases the rate of accep-
tance of MCMC draws by exploiting the delayed rejection trick
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proposed in Tierney and Mira (1999) and the adaptive Metropolis
algorithm of Haario et al. (2001). ter Braak and Vrugt (2008)
developed the Differential Evolution-Markov Chain (DE-MC) algo-
rithm, which merges the differential evolution method of ter Braak
(2006) and the Shuffled Complex Evolution Metropolis (SCEM)
method proposed by Vrugt et al. (2003). DREAM improves the ef-
ficiency of MCMC by running multiple chains in parallel for a wider
and quicker exploration of the parameter space in addition to a self-
adaptive randomized subspace sampling (Vrugt et al., 2009).
Recently, the algorithm of DREAM has been embedded in
UCODE_2014, dedicated to inverse modeling (Lu et al., 2014). Laloy
and Vrugt (2012) then developed DREAM(ZS), that ensures conver-
gence with fewer chains in parallel than DREAM.

Recently, Mara et al. (2015) proposed a new probabilistic
approach to the inverse problem whose main idea is to maximize
the joint posterior pdf of a parameter set with one selected
parameter sampling successive prescribed values. This provides the
so-calledMaximal Conditional Posterior Distribution (MCPD) of the
selected parameter. The main advantage of the recent MCPD
technique is that parameter distributions can be inferred inde-
pendently. Therefore, the MCPDs can be simultaneously evaluated
on multicore computers (or on multiple computers). This drasti-
cally reduces the computational effort in terms of computational
time units (CTU).

The MCPD and MCMC samplers assess the same target distri-
bution, namely, the parameter joint posterior pdf. Nevertheless, the
two samplers do not provide the same results. In general, the MCPD
of a single parameter does not correspond to its marginal posterior
distribution. In addition, the MCPD sampler only provides a few
sets of probable draws while MCMC generates a large number of
draws sampled in agreement with the target distribution. Never-
theless and as advocated in this study, both samplers are valuable
Bayesian methods for statistical inverse problems. Hence, the main
objective of the present work is to compare the ability of MCPD and
DREAM(ZS) MCMC samplers to quantify model output and model
parameter uncertainties.

The paper is organized as follows: Section 2 summarizes the
inversion in a Bayesian framework and recalls the principles of the
recent MCPD technique. The general algorithms ruling the
DREAM(ZS) MCMC and MCPD samplers are introduced in Section 3.
In Section 4, we discuss on the analogy and the differences between
MCPD and MCMC draws. Section 5, emphasizes the comparison
between MCMC and MCPD samplings: 1) for the inversion of
multimodal and correlated functions, and 2) for the evaluation of
soil hydraulic properties from a synthetic one-dimensional
drainage experiment. Finally, a summary with conclusions is pre-
sented in Section 6.

2. Inverse problem

2.1. Bayesian inference

In probabilistic inverse modeling, the parameter set
x ¼ ðx1;…; xdÞ of a computer model is inferred from a set of
observation data y using the Bayesian inference, which defines the
conditional joint posterior pdf as follows:

pðxjyÞfpðyjxÞpðxÞ; (1)

where pðxÞ is the prior density that characterizes the investigator's
beliefs about the parameters before collecting the new observa-
tions, and pðyjxÞ is the likelihood function, which measures how
well the model fits the data. The parameter set that maximizes Eq.
(1), namely:

xMAP ¼ argmax
x

pðxjyÞ; (2)

is called the Maximum A Posteriori (MAP) estimate of the param-
eters. It is the most probable parameter set given the data and can
be inferred via an optimization technique. The marginal posterior
pdf that characterizes the uncertainty of a single parameter is
defined by the following integral:

pðxijyÞ ¼
Z

pðxjyÞdx�i; ci ¼ 1;…;d (3)

where x�i represents all the parameters except xi. Usually, the in-
tegral in Eq. (3) is evaluated by a multidimensional quadrature
method or by direct summations in a large sample of pðxijyÞ ob-
tained, for instance, via an MCMC technique.

2.2. Maximal conditional posterior distribution

Mara et al. (2015) define the maximal conditional posterior
distribution of xi as follows:

PðxiÞ ¼ max
x�i

ðpðx�ijy; xiÞÞ � pðxijyÞ: (4)

An informal definition can be given by stating that a point es-
timate of the MCPD is the maximal value reached by the joint pdf
Eq. (1) for a given (prescribed) value of one parameter (i.e. xi). This
maximal value, in the context of model inversion, assumes that the
set x�i maximizes Eq. (1), knowing that xi is prescribed. By applying
the axiom of conditional probabilities to Eq. (4), it can be stated that
maxfpðx�ijy; xiÞg � pðxijyÞ ¼ maxx�ifpðx�i; xijyÞg. Therefore, the
MAP estimate (when it exists) belongs to the MCPD of all
parameters.

In view of the MCPD definition, especially its interpretation in
terms of the xi draws for the other parameters at their optimal
values, the MCPD can provide information on the uncertainty
attached to a single parameter. Obtaining uncertainties for all pa-
rameters is simply achieved by calculating the individual MCPD of
all parameters.

3. Parameter uncertainty assessment

3.1. The DREAM(ZS) MCMC sampler

The MCMC samplers generate successive draws of parameter
sets that converge toward the posterior density pðxjyÞ. Several
methods are reported in the literature (e.g. Grenander and Miller,
1994; Haario et al., 2006; Vrugt et al., 2009; Laloy and Vrugt,
2012), but they all rely on the Metropolis-Hasting algorithm,
which proceeds according to the following schedule:

(i) Choose an initial estimate of the parameter set x0 and a
proposal distribution qða;bÞ that randomly derives the
parameter set a from an input b.

(ii) From the current set xk, generate a new candidate x� with the
generator qðx�;xkÞ.

(iii) Compute a ¼ pðx�jyÞpðx�)xkÞ=pðxk
���yÞpðxk)x�Þ, where

pðb)aÞ is the transition probability from individual a to
individual b associated with the generator q. Additionally,
draw a random number u2½0;1� from a uniform distribution.

(iv) If a � u, set xkþ1 ¼ x�, otherwise, set xkþ1 ¼ xk.
(v) Resume from (ii) until the chain fx0;…; xkg converges or a

prescribed number of iterations kmax is reached.

The calculation of pðx�jyÞ in (iii) requires that the forwardmodel
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