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a b s t r a c t

Wildfires have significant environmental and economic effects. Since containment of wildfires involves
deciding under tight time constraints, there is an increasing need for accurate yet computationally
efficient wildfire prediction models. We consider the problem of finding the fire traversal time across a
landscape considering wind speed as an unpredictable phenomenon. The landscape is represented as a
graph network and fire propagation time is modeled as the Stochastic Shortest Path problem. Monte-
Carlo simulation is utilized to determine the fire travel-time distribution. A network size reduction
methodology is introduced to quicken the simulation time by eliminating the unimportant parts of the
network. This methodology is implemented in Java to simulate the wildfire propagation on a study area
located in Massachusetts. This method shows the capability of substantially reducing the simulation time
without affecting prediction accuracy, enabling the algorithm to serve as a fast and reliable tool for fire
prediction.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Wildfires have significant short-term and long-term local eco-
nomic effects, with larger fires generally having serious longer-
term impacts. Wildfires can directly restrain recreation and
tourism. They can cause significant damage to infrastructure and
facilities located at the wildfire-urban interface. Extensive fire
damage to trees can significantly alter the timber supply and water
supplies can be degraded by post-fire erosion. If an area's aesthetics
are impaired, local property values may decline. On average, more
than 100,000 wildfires burn 4 to 5 million acres (1.6e2 million
hectares) of land in the U.S. every year (NG, 2014). Predicting the
fire arrival time to a point of interest can greatly help in choosing
the mitigation strategy and preparing to evacuate in-danger areas
before the fire's arrival. A precise estimate of the fire perimeter and
fire spread rate makes it possible to determine the optimal escape
routes.

In this paper, we present a stochastic fire spread model capable
of accounting for the unpredictable changes in the wind speed. The
model provides a stochastic time frame with associated probabili-
ties for thewildfire arrival time at a point of interest, e.g. residences,

firemen camp, etc. This in turn determines the reliability of the
provided arrival times and helps the decisionmaker in adopting the
best action plan.

2. Background

The focus of this paper is on fire propagation through a surface
fire, i.e. the fire that burns fuels located at ground level such as leaf
litter and fallen branches (Alexander and Cruz, 2011). Surface fires
can have surprisingly huge impacts on forest floor vegetation, and
can greatly increase the likelihood of far larger fires that can lead to
complete destruction of a forest (Laurance, 2003).

According to Sullivan (2007c) classification scheme, there are
three categories of surface fire models: 1) physical models, 2)
empirical models, and 3) mathematical analogous and simulators.
Physical models are those concerned with the mathematical anal-
ysis of the fundamental physical and chemical processes of fire
spread. Empirical models are those developed from historical
wildfire studies or from experiments and observations. The focus of
empirical models is on the key characteristics that describe the fire
behavior. The primary use of such models has been to predict the
fire Rate Of Spread (ROS) in the direction of the wind (Sullivan,
2007a).

One of the widely used models in this category is the Roth-
ermel's model (Rothermel, 1972) which forms the basis of National

* Corresponding author.
E-mail address: hajian.m@husky.neu.edu (M. Hajian).

Contents lists available at ScienceDirect

Environmental Modelling & Software

journal homepage: www.elsevier .com/locate/envsoft

http://dx.doi.org/10.1016/j.envsoft.2016.03.012
1364-8152/© 2016 Elsevier Ltd. All rights reserved.

Environmental Modelling & Software 82 (2016) 73e88

Delta:1_given name
Delta:1_surname
Delta:1_given name
mailto:hajian.m@husky.neu.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.envsoft.2016.03.012&domain=pdf
www.sciencedirect.com/science/journal/13648152
http://www.elsevier.com/locate/envsoft
http://dx.doi.org/10.1016/j.envsoft.2016.03.012
http://dx.doi.org/10.1016/j.envsoft.2016.03.012
http://dx.doi.org/10.1016/j.envsoft.2016.03.012


Fire Danger Rating System (Scott and Burgan, 2005) and also the
fire prediction tool BEHAVE (Sullivan, 2007a). The Rothermel's
model is able to predict ROS, taking into account fire environmental
factors such as the mean wind velocity, slope of the terrain, prop-
agating flux and fuel characteristics. Other researchers have also
tried to establish a quantitative relationship between the fire
environment and the ROS to predict the fire behavior. To name a
few: Fernandes et al. (2002) considering mediterranean pine trees
(pine pinaster), Cheney and Gould (1995) grassland, Marsden-
Smedley and Catchpole (1995) buttongrass and Cruz et al. (2013)
who used non-linear regression analysis for ROS prediction.

In the third category of fire models, the focus is on the simula-
tion of fire spread across the landscape from a holistic perspective.
The models in this category are generally concerned with predict-
ing the wildfire pattern and final shape in addition to estimating its
behavior. Most of the simulation software packages and tools fall
into this category. Finney (2004) developed FARSITE area simulator
based on the BEHAVE fire prediction system (Sullivan, 2007b).
BEHAVE (Finney, 2004) is a fire behavior prediction and fuel
modeling system based on Rothermel's model and consists of two
main components, FUEL (Burgan and Rothermel, 1984) and BURN
(Andrews, 1986). FARSITE is the most commonly used and widely
recognized deterministic fire growth modeling system (Massada
et al., 2011) and is used by the National Park Service, U.S. Forest
Service, and other federal and state land management agencies
(FARSITE, 2014). FARSITE is not only a fire prediction tool but also a
system that supports warning to population and defining fire
fighting tactics. Other fire simulators include IGNITE (Green et al.,
1990), FIREMAP (Vasconcelos and Guertin, 1992), FlamMap
(Finney, 2006), Prometheus, FIRE!, DYNAFIRE, PYROCAT, FireMaster
(Fernandes et al., 2002) and FireStation (Lopes et al., 2002).

Cellular Automata (CA) is another methodology that has been
widely utilized for simulation of catastrophic events such as wild-
fire. CA is implemented using a raster representation of the land-
scape in which fire propagates from one cell to another based on a
set of rules (Peterson et al., 2009). Researchers have tried to in-
crease the accuracy and speed of CA-based algorithms via various
methods such as changing the shape of the cells (Trunfio, 2004),
taking advantage of parallel processing (Karafyllidis, 2004), using
fuzzy logic (Mraz et al., 1999) and stochastic modeling of CA
(Almeida and Macau, 2011). The main weakness of CA is that it can
suffer from distortion of the produced fire shape. Ghisu et al. (2015)
tried to mitigate this problem by modifying the fire spread equa-
tions in an optimal CA model.

Cova et al. (2005) utilized a network-based representation of fire
spread, associating network arcs with fire spread times to deter-
mine the evacuation buffer. Dijkstra's shortest path algorithm was
employed to calculate the fire travel time through the network. The
Shortest Path (SP) problem is one of the best-known combinatorial
optimization problems. In graph theory, the shortest path problem
is defined as the problem of finding a path between two vertices in
a graph in a way that the sum of the weights of edges comprising
the path is minimized. Dijkstra's algorithm is able to find all the
shortest paths between a given source node and all the other nodes
in a network. Stepanov and Smith (2012) represented a heteroge-
neous fire landscape as a network and used Dijkstra's algorithm to
estimate theminimum fire travel time paths from ignition points to
specific points of interest.

Although the wildfire literature is rich on deterministic models,
uncertainty analysis in fire modeling is a rarely studied topic.
Bachmann and Allgwer (2002) applied first-order Taylor series to
Rothermel's equations to compare the variation of input uncer-
tainty to output uncertainty. They recognized the wind speed as
one of the most important contributors. In a recent study, Hilton
et al. (2015) investigated the variation of wind speed, wind

direction and combustion conditions on the fire perimeter rate of
propagation. Hargrove et al. (2000) developed a probabilistic tool
called EMBYR to simulate large fires through heterogeneous land-
scapes by calculating transfer probabilities between cells on a grid
network. Boychuk et al. (2009) developed a stochastic fire growth
model on a grid utilizing continuous-time Markov-chain in which
the rate of fire spread in each cell of the grid was considered to be
exponential.

In this study we consider uncertainty propagation in a network-
based representation of the landscape. Random variables are used
to represent the fire rate of spread in the network with the goal of
finding the minimum fire travel time probability distribution be-
tween an ignition point (source) and a point of interest (destina-
tion). We have developed a simulation model to account for the
variability of the wind, which is one of the most important factors
in wildfire spread. Our method provides the ability to speed up the
simulation process to make the algorithm computationally reliable
and efficient for real-time wildfire events.

3. Materials and methods

3.1. Study area

The Montague Plains Wildlife Management Area (MPWMA) in
West-Central Massachusetts was selected as the study area for this
research due to the availability of fire data, whichwas first provided
by Duveneck (2005), and later studied by Stepanov and Smith
(2012). The MPWMA is owned and managed by the Massachu-
setts Department of Conservation and Recreation (DCR) Division of
Fisheries and Wildlife (DFW) in cooperation with Northeast Utili-
ties (NU). The primary purposes of the site are to preserve and
protect an outstanding example of pine-scrub oak barrens, which
occur throughout the Northeast from New Jersey to Maine. The
barrens are characterized by excessively drained soils and by
several plant species which are highly flammable (Clark &
Patterson III, 2003). The site also provides an area for wildfire
viewing and scientific research.

The pink area in Fig. 1a shows the location of the Franklin
County, in the Commonwealth of Massachusetts within which the
red area is the town of Montague. A magnified view of Montague
with its Wildlife Management area is depicted in Fig. 1b.

3.2. Predicting the fire propagation time

Fire propagation rate depends on fuel characteristics, terrain,
and weather, which are the three fire environment factors. Among
the weather factors, the surface wind speed is one of the main
factors affecting the fire rate of spread (Marsden-Smedley and
Catchpole, 1995). In fire models, the mean wind velocity is typi-
cally used to represent the wind effect. However, this is not an
accurate representation as wind is dynamic and changes quickly.
We propose a wildfire propagation model in which the wind speed
and accordingly the fire rate of spread are modeled as a random
variable to account for the variability of the wind speed. It should
be noted that we modeled the wind speed based on the pre-
dominant wind speed and our model does not account for the ef-
fect of fire-induced winds.

Fig. 2 depicts a high-level schematic of our proposed model. A
network-based approach is used to represent the fire possible
propagation paths on the landscape.

3.3. Network construction

Our network is a graph consisting of a set of nodes V and a set of
edges E. In our model, the network nodes represent certain points
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