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a b s t r a c t

An intelligent-optimal control scheme for unknown nonaffine nonlinear discrete-time systems with
discount factor in the cost function is developed in this paper. The iterative adaptive dynamic
programming algorithm is introduced to solve the optimal control problem with convergence analysis.
Then, the implementation of the iterative algorithm via globalized dual heuristic programming technique
is presented by using three neural networks, which will approximate at each iteration the cost function,
the control law, and the unknown nonlinear system, respectively. In addition, two simulation examples
are provided to verify the effectiveness of the developed optimal control approach.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The main difference between optimal control of linear systems
and nonlinear systems lies in that the latter often requires solving
the nonlinear Hamilton–Jacobi–Bellman (HJB) equation instead
of the Riccati equation (Abu-Khalaf & Lewis, 2005; Al-Tamimi,
Lewis, & Abu-Khalaf, 2008; Primbs, Nevistic, & Doyle, 2000; Wang,
Zhang, & Liu, 2009). For example, the discrete-time HJB (DTHJB)
equation is more difficult to deal with than Riccati equation
because it involves solving nonlinear partial difference equations.
Although there were some methods that did not need to solve
the HJB equation directly (e.g., Beard, Saridis, & Wen, 1997; Chen,
Edgar, & Manousiouthakis, 2004), they were limited to handle
some special classes of systems or they needed to perform very
complex calculations. On the other hand, dynamic programming
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(DP) has been a useful technique in solving optimal control
problems for many years (Bellman, 1957). However, it is often
computationally untenable to run DP to obtain optimal solutions
due to the ‘‘curse of dimensionality’’ (Bellman, 1957). Moreover,
the backward direction of search precludes the application of DP
in real-time control.

Artificial neural networks (ANN or NN) are an effective
tool to implement intelligent control due to the properties
of nonlinearity, adaptivity, self-learning, fault tolerance, and
universal approximation of input–output mapping (Jagannathan,
2006; Werbos, 1992, 2008, 2009). Thus, it has been used
for universal function approximation in adaptive/approximate
dynamic programming (ADP) algorithms, which were proposed in
Werbos (1992, 2008, 2009) as a method to solve optimal control
problems forward-in-time. There are several synonyms used for
ADP including ‘‘adaptive dynamic programming’’ (Lewis & Vrabie,
2009; Liu & Jin, 2008; Murray, Cox, Lendaris, & Saeks, 2002; Wang
et al., 2009), ‘‘approximate dynamic programming’’ (Al-Tamimi
et al., 2008; Werbos, 1992), ‘‘neuro-dynamic programming’’
(Bertsekas & Tsitsiklis, 1996), ‘‘neural dynamic programming’’ (Si
& Wang, 2001), ‘‘adaptive critic designs’’ (Prokhorov & Wunsch,
1997), and ‘‘reinforcement learning’’ (Watkins & Dayan, 1992).

As an effective intelligent control method, in recent years,
ADP and the related research have gained much attention from
researchers (Balakrishnan & Biega, 1996; Balakrishnan, Ding, &
Lewis, 2008; Dierks, Thumati, & Jagannathan, 2009; Jagannathan &
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He, 2008; Vamvoudakis & Lewis, 2010; Venayagamoorthy, Harley,
& Wunsch, 2002; Venayagamoorthy, Wunsch, & Harley, 2000;
Vrabie & Lewis, 2009; Yen & Delima, 2005; Zhang, Luo, & Liu, 2009;
Zhang, Wei, & Liu, 2011). According to Prokhorov and Wunsch
(1997) and Werbos (1992), ADP approaches were classified
into several main schemes: heuristic dynamic programming
(HDP), action-dependent HDP (ADHDP; note the prefix ‘‘action-
dependent’’ (AD) used hereafter), also known as Q -learning
(Watkins & Dayan, 1992), dual heuristic dynamic programming
(DHP), ADDHP, globalized DHP (GDHP), and ADGDHP. Al-Tamimi
et al. (2008) derived a significant result that applied the HDP
iteration algorithm to solve the DTHJB equation of affine nonlinear
discrete-time systems.

In this paper, we will tackle the optimal control problem for
unknown nonlinear discrete-time systems using iterative ADP
algorithmvia GDHP technique (iterative GDHP algorithm for brief).
Though great progress has been made for ADP in optimal control
field, to the best of our knowledge, there is still no result to solve
this problem by using the iterative GDHP algorithm. Additionally,
the outputs of critic network of the GDHP technique contain not
only the cost function but also its derivatives. This is different
from HDP and DHP and is very important because the information
associated with the cost function is as useful as the knowledge
of its derivatives. Though the structure of the GDHP technique
is somewhat complicated, it is expected to bring remarkable
advantage when compared with simple ADP strategies. These
motivate our research.

This paper is organized as follows. In Section 2, we present the
formulation of the problem. In Section 3, we develop the optimal
control schemebasedon iterativeADPalgorithmwith convergence
analysis, and then present the corresponding NN implementation
of the iterative GDHP algorithm. In Section 4, two examples are
given to demonstrate the effectiveness of the present control
strategy. In Section 5, concluding remarks are given.

2. Problem statement

Here, we make the assumption that the state of the controlled
system is available for measurement.

In this paper, wewill study the nonlinear discrete-time systems
described by

xk+1 = F(xk, uk), k = 0, 1, 2, . . . , (1)

where xk ∈ Rn is the state and uk = u(xk) ∈ Rm is the control
vector. Let x0 be the initial state. The system function F(xk, uk)
is continuous for ∀ xk, uk and F(0, 0) = 0. Hence, x = 0 is an
equilibrium state of system (1) under the control u = 0.

Definition 1. A nonlinear dynamical system is said to be stabiliz-
able on a compact set Ω ∈ Rn, if for all initial states x0 ∈ Ω , there
exists a control sequence u0, u1, . . . , ui ∈ Rm, i = 0, 1, . . . , such
that the state xk → 0 as k → ∞.

It is desired to find the control law uk = u(xk)whichminimizes
the infinite horizon cost function given by

J(xk) =

∞
p=k

γ p−kU(xp, up), (2)

where U is the utility function, U(0, 0) = 0,U(xp, up) ≥ 0 for
∀ xp, up, and γ is the discount factor with 0 < γ ≤ 1. In this paper,
the utility function is chosen as the quadratic form U(xp, up) =

xTpQxp + uT
pRup, where Q and R are positive definite matrices with

suitable dimensions.
For optimal control problems, the designed feedback control

must not only stabilize the system on Ω but also guarantee that
(2) is finite, i.e., the control must be admissible.

Definition 2. A control u(x) is said to be admissiblewith respect to
(2) on Ω if u(x) is continuous on a compact set Ωu ∈ Rm, u(0) =

0, u stabilizes (1) on Ω , and ∀x0 ∈ Ω, J(x0) is finite.

Note that Eq. (2) can be written as

J(xk) = xTkQxk + uT
kRuk + γ

∞
p=k+1

γ p−k−1U(xp, up)

= xTkQxk + uT
kRuk + γ J(xk+1). (3)

According to Bellman’s optimality principle, the optimal cost
function J∗(xk) satisfies the DTHJB equation

J∗(xk) = min
uk


xTkQxk + uT

kRuk + γ J∗(xk+1)

. (4)

Besides, the optimal control u∗ can be expressed as

u∗(xk) = argmin
uk


xTkQxk + uT

kRuk + γ J∗(xk+1)

. (5)

By substituting (5) into (4), the DTHJB equation becomes

J∗(xk) = xTkQxk + u∗T (xk)Ru∗(xk) + γ J∗(xk+1). (6)

It should be noticed that Definitions 1 and 2 are the same
for linear systems. Moreover, when dealing with linear quadratic
regulator problems, the DTHJB equation reduces to the Riccati
equation which can be efficiently solved. For the general nonlinear
case, however, it is considerably difficult to cope with the DTHJB
equation directly. Therefore, we will develop an iterative ADP
algorithm to solve it in the next section, based on Bellman’s
optimality principle and the greedy iteration approach.

3. Neuro-optimal control scheme based on iterative ADP
algorithm via the GDHP technique

3.1. Derivation of the iterative algorithm

First, we start with the initial cost function V0(·) = 0 and obtain
the law of the single control vector v0(xk) as follows:

v0(xk) = argmin
uk


xTkQxk + uT

kRuk + γ V0(xk+1)

. (7)

Then, we update the cost function as

V1(xk) = xTkQxk + vT
0 (xk)Rv0(xk). (8)

Next, for i = 1, 2, . . . , the algorithm iterates between

vi(xk) = argmin
uk


xTkQxk + uT

kRuk + γ Vi(xk+1)


(9)

and

Vi+1(xk) = xTkQxk + vT
i (xk)Rvi(xk) + γ Vi(F(xk, vi(xk))). (10)

In the above recurrent iteration, i is the iteration index, while k is
the time index. The cost function and control law are updated until
they converge to the optimal ones. In the following,wewill present
the convergence proof of the iteration between (9) and (10) with
the cost function Vi → J∗ and the control law vi → u∗ as i → ∞.

3.2. Convergence analysis of the iterative algorithm

The convergence analysis provided here is an extension of that
given in Al-Tamimi et al. (2008).
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