
Modelling spatial and temporal changes with GIS and Spatial and
Dynamic Bayesian Networks

Yung En Chee a, b, *, Lauchlin Wilkinson c, Ann E. Nicholson c,
Pedro F. Quintana-Ascencio d, John E. Fauth d, Dianne Hall e, Kimberli J. Ponzio e,
Libby Rumpff a

a School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
b School of Ecosystem and Forest Sciences, The University of Melbourne, 500 Yarra Boulevard, Burnley, VIC 3121, Australia
c Faculty of Information Technology, Monash University, PO Box 197, Caulfield East, VIC 3145, Australia
d Department of Biology, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL 32816-2368, USA
e Division of Water Resources, St. Johns River Water Management District, PO Box 1429, Palatka, FL 32178-1429, USA

a r t i c l e i n f o

Article history:
Received 28 January 2016
Received in revised form
11 April 2016
Accepted 12 April 2016

Keywords:
Probabilistic graphical models
State-and-transition models
Object-oriented
Adaptive management
Willow

a b s t r a c t

State-and-transition models (STMs) have been successfully combined with Dynamic Bayesian Networks
(DBNs) to model temporal changes in managed ecosystems. Such models are useful for exploring when
and how to intervene to achieve the desired management outcomes. However, knowing where to
intervene is often equally critical. We describe an approach to extend state-and-transition dynamic
Bayesian networks (ST-DBNs) d incorporating spatial context via GIS data and explicitly modelling
spatial processes using spatial Bayesian networks (SBNs). Our approach uses object-oriented (OO) con-
cepts and exploits the fact that ecological systems are hierarchically structured. This allows key phe-
nomena and ecological processes to be represented by hierarchies of components that include similar,
repetitive structures. We demonstrate the generality and power of our approach using two models d

one developed for adaptive management of eucalypt woodland restoration in south-eastern Australia,
and another developed to manage the encroachment of invasive willows into marsh ecosystems in east-
central Florida.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Bayesian networks (Pearl, 1988) are increasingly popular for
ecological and environmental modelling, decision support and
adaptive management (Nyberg et al., 2006; Korb and Nicholson,
2010; Aguilera et al., 2011). Ecosystem management problems
characteristically involve variable, complex and imperfectly un-
derstood biophysical, social and economic interactions. The itera-
tive knowledge-engineering process of developing BNs is
invaluable for: a) clarifying objectives; b) identifying and articu-
lating alternatives; c) synthesising available knowledge; d) quan-
tifying uncertainties and d) pinpointing critical assumptions to be
tested by purposeful monitoring. When fully parameterised, such
models help us explore and (where possible) resolve uncertainty
about the consequences of management decisions. This is integral

to adaptive management (sensuHolling, 1978;Walters and Hilborn,
1978) which supplies the broader framework for evaluating the
performance of decision actions and updating our knowledge base
to improve future management (Nichols and Williams, 2006;
Duncan and Wintle, 2008).

Despite the obvious value of using BNs to support learning over
time for adaptive management (see e.g., Ames et al., 2005; Chee
et al., 2005), most published examples of BNs for environmental
applications have focused on formalising static conceptual models
of the system in question, and do not explicitly represent ongoing
dynamics (e.g. multiple time steps and sequential decisions)
(Barton et al., 2012). Examples that incorporate spatiality explicitly
are even rarer. Yet it is critical to address these gaps because the
ability to understand change over time, and to account for spatial
context and interactions is often necessary for meaningful decision
support.

For instance, in our eucalypt woodlands case study, restoring
species composition, ecosystem structure and function is a long-
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term undertaking that needs to effectively manage threats like
weed establishment, so that the recovery process can build upon
successive gains. In our invasive willows management case study,
control efforts are long-term because adult willows have become
firmly established within the catchment. In both cases, spatial
considerations are crucial because the encroachment of weeds (in
woodlands) and willow seedlings (in marsh ecosystems) depends
on seed production and dispersal from surrounding areas, and
spatial characteristics also determine the applicability and effec-
tiveness of management actions.

State-and-transition dynamic Bayesian networks (ST-DBNs) as
described by Nicholson and Flores (2011) provide a viable approach
for explicitly modelling change over time. Here, we extend the
capabilities of ST-DBNs e first, coupling them to GIS data so we can
harness spatially relevant data, and then explicitly modelling key
spatial processes using spatial Bayesian networks (SBNs). Our
approach makes use of object-oriented (OO) concepts and exploits
the fact that ecological systems are hierarchically structured such
that key phenomena and processes of interest can be represented
by nesting components that include similar, repetitive structures.

First, we explain the ‘buildings blocks’ and concepts of the tools
we use for modelling spatial and temporal changes with BNs. We
then present and illustrate our approach using two modelsdone
developed for adaptive management of eucalypt woodland resto-
ration in south-eastern Australia (‘Woodlandsweed’model, Rumpff
et al. (2011)), and another developed to manage willow spread into
marsh ecosystems in east-central Florida, USA (‘Willows’ model,
Wilkinson et al. (2013)). Of course, incorporating spatial context
and processes can lead to a massive increase in the size and
complexity of the networks, which in turn generates computational
issues and difficulties with the probabilistic updatingdwe discuss
our approach to handling these challenges and provide a generic
system architecture, templates and algorithms for combining GIS,
object-oriented spatial BNs and object-oriented state-transition
DBNs.

To our knowledge, this is the first demonstration of the inte-
gration of these three tools. This novel and powerful approach al-
lows the incorporation of spatial context where it is critical for
decision-making.

2. Background: building blocks and OO concepts

State-and-transition models (STMs) are management-focused,
qualitative conceptual models that synthesise knowledge about an
ecological system, in the form of observed and/or hypothesised
system states and transitions that are of management interest
(Westoby et al., 1989; Jackson et al., 2002). STMs are a popular tool
for modelling changes over time in ecological systems that have
clear transitions between distinct states. They combine graphical
depiction of transitions and their causal factors with tables of
qualitative descriptions of the transitions. They have been widely
applied both to understand and help manage vegetation change in
ecosystems such as rangelands (e.g., Westoby et al., 1989;
Bestelmeyer et al., 2003; Bashari et al., 2009), grasslands (e.g.,
Sadler et al., 2010) and woodlands (e.g., Yates and Hobbs, 1997b;
Rumpff et al., 2011).

Bayesian networks (BNs) are graphical models of cause-effect
relationships used for reasoning under uncertainty. More
formally, a Bayesian network (Pearl, 1988) is a directed, acyclic
graph whose nodes represent the random variables in the problem.
A set of directed arcs connect pairs of vertices, representing the
direct dependencies of variables. The set of nodes pointing to X are
called its parents and is denoted pa(X). BNs display key variables in
the system succinctly, showwhich variables are linked and how the
causal chain or argument links events to outcomes of interest. The

relationship between variables is quantified by conditional proba-
bility tables (CPTs) associated with each node, namely P(Xjpa(X)).
The CPTs together compactly represent the full joint distribution.
Users can set the values of any combination of nodes in the network
that they have observed. This evidence, e, propagates through the
network, producing a new posterior probability distribution P(Xje)
for each variable in the network. There are a number of efficient
exact and approximate inference algorithms for performing this
probabilistic updating, providing a powerful combination of pre-
dictive, diagnostic and explanatory reasoning.

Dynamic Bayesian Networks (DBNs) are a variant of ordinary
BNs (Dean and Kanazawa, 1989; Kjærulff, 1992; Nicholson, 1992)
that explicitly model changes over time and can be used to model
feedback functions in problem contexts where this is important. A
typical DBN has nodes for N variables of interest and for each
domain variable X1, there is one copy for each time slice for interest:
XT
i , X

Tþ1
i , XTþ2

i etc. Links in a DBN include those between nodes in
the same time slice, and those in the next time slice. Of the latter,
temporal arcs may link the same variable over time, XT

i /XTþ1
i , and

different variables over time, XT
i /XTþ1

j . Environmental applica-
tions employing DBNs are scarce (e.g., Shihab and Chalabi, 2007;
Dawsey et al., 2007; Shihab, 2008). This may be because they are
perceived to be “very tedious” (Uusitalo, 2007), or because DBN
algorithms are available only in software resulting from research
projects1, with DBN functionality less well supported in popular
commercial products.

State-and-transition Dynamic Bayesian Networks (ST-DBNs)
combine the advantages of graphical visualisation of transitions
and their influencing factors with quantitative representation of
dependencies and uncertainty, along with explicit representation
of time. Our example models are based on Nicholson and Flores
(2011)'s template.

ST represents the state of the system, has n possible values s1…
sn, and may directly influence any of the environmental and man-
agement factors, which are divided into m main factors, F1, …, Fm
(which directly influence transitions) and other sub-factors, X1, …,
Xr (which influence the main factors).

Transition nodes, ST1,…, STn, represent the transitions from each
state si. Each has at most nþ 1 values (usually fewer), one for each
“next” state plus “impossible”, giving explicit modelling of impos-
sible transitions. Like ordinary DBNs, there is an implied dT, which
can be included explicitly as a parent of all the ST nodes, if the time
step varies. Each transition node ST has only some of the causal
factors as parents. The CPT for the ST node is just a partition of the
corresponding CPT if the problem was represented as an ordinary
DBN, without the transition nodes. The next state node, STþ1, has to
combine the results of all the different transition nodes, given the
starting state S, and thus has nþ 1 parents. However, the rela-
tionship between the transition nodes and STþ1 is deterministic, so
the CPT can be generated from a straightforward equation.

It is important to note that ST-BNs that explicitly model all the
transitions, only remain tractable when there are natural con-
straints in the domain; that is, if the number of transitions from
each state is limited and only influenced by a small number of
causal factors such that the underlying state transition matrix for S
is sparse (Nicholson and Flores, 2011).

2.1. How does object-oriented (OO) thinking help?

The complexity of ecological systems is such that representing
even a moderate degree of ecological realism tends to lead to large
networks. The resulting visual ‘clutter’ of large networks makes

1 e.g. BNT, code.google.com/p/bnt.
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