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a b s t r a c t

In this paper, we consider the state transfer problem for closed quantum systems under a degenerate case,
where the linearized system around the target state is not controllable. It is known that the traditional
Lyapunov controlmethodsmay fail to guarantee the convergence to the target state under the degenerate
case. Hence, we propose to use multiple Lyapunov functions and design a switching control strategy to
achieve more accurate state transfer. It is shown that the system can converge to the intersection of
invariant sets including the target state. The explicit analysis of the convergence is provided to design
the switching law. Moreover, the effectiveness of open-loop Lyapunov control is discussed. Simulation
studies are presented to show the improved control performance.

Crown Copyright© 2012 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Driven by recent technological developments and its promise
in a wide variety of applications, such as quantum computation
(Mitra&Rabitz, 2003;Nielsen&Chuang, 2000), NMR (D’Alessandro,
2007), quantum chemistry (Tersigni, Gaspard, & Rice, 1990), and
quantum optics (Nurdin, James, & Petersen, 2009), quantum con-
trol has been attracting more and more research attention these
last few years, e.g., controllability of quantum systems using Lie al-
gebra (D’Alessandro, 2010), optimal control (Ho & Rabitz, 2010),
Lyapunov control (Altafini, 2007; Beauchard, Coron, Mirrahimi, &
Rouchon, 2007; Grivopoulos & Bamieh, 2003; Kuang & Cong, 2008;
Mirrahimi, Rouchon, & Turinici, 2005; Wang & Schirmer, 2010a,b),
measurement assistant control (Pechen, Il’in, Shuang, & Rabitz,
2006), closed-loop learning control (Dong, Chen, Tarn, Pechen, &
Rabitz, 2008), and closed-loop feedback control (Mirrahimi & Han-
del, 2007; Van Handel, Stockton, & Mabuchi, 2005; Wang & Wise-
man, 2001; Yamamoto, Tsumura, & Hara, 2007).
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One central problem is how to design the control to steer
the quantum state to a fixed target state, or track an adiabatic
trajectory. Much attention has been focused on the Lyapunov
control of closed quantum systems by assuming that the interac-
tions with the environment can be neglected, see Altafini (2007),
Beauchard et al. (2007), Grivopoulos and Bamieh (2003), Kuang
and Cong (2008), Wang and Schirmer (2010a,b) and Mirrahimi
et al. (2005). Sincemeasurements and feedbackwould lead tomore
complicated models than Schrödinger equations, a usual practice
in Lyapunov-based quantum control is to first obtain a control sig-
nal from a simulation study and then apply it to real systems, i.e.,
open-loop control with precalculated control signals.

A great deal of progress has been made in the conventional
Lyapunov method. However, it may fail to achieve the control
objective when the linearized system around the target state
is not controllable. This case is called a degenerate case in the
literature, which could happen in practical quantum systems such
as the five-level system shown in Ramakrishna, Salapaka, Dahleh,
Rabitz, and Peirce (1995) and Tersigni et al. (1990) and the four-
level molecular systems in Gross, Neuhauser, and Rabitz (1991)
and Phan and Rabitz (1999). To deal with this degenerate case,
alternative methods based on an implicit Lyapunov function and
trajectory tracking were proposed in Beauchard et al. (2007) and
Mirrahimi et al. (2005), respectively. However, the difficulties of
these methods lie in the characterization of LaSalle invariant sets
and the convergence analysis. To overcome these difficulties, we
propose a switching control.

In the past decade, switching control of classical systems has
attracted much attention. It can stabilize unstable systems and
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greatly improve the control performance (Baldi, Battistelli, Mosca,
& Tesi, 2010; Dong & Sun, 2008; Lin & Antsaklis, 2007; Santarelli,
2011; Ye, 2005). Recently, the switching control has been extended
to quantumsystems (Coron, Grigoriu, Lefter, & Turinici, 2009;Dong
& Petersen, 2010; Khaneja, 2007; Lou, Cong, Yang, & Kuang, 2011;
Mirrahimi & Handel, 2007). This motivates us to investigate a
more intuitive switching control of closed quantum systems for
the degenerate case. The basic idea of the proposed method is
based on the combination of the multiple Lyapunov functions and
switching control. It is interesting to find that the switching control
can achieve the convergence to the intersection of invariant sets,
strictly smaller than any of the invariant sets. For the switching
control, onemain difficulty lies in how to design the switching law.
By the explicit convergence analysis, a state-based switching law is
designed. Another difficulty is how to guarantee the effectiveness
of the switching control in the presence of disturbances induced
by the control fields or initial states. By estimating the distance
between a nominal system and its perturbed system, we find that
the switching control is effective in spite of small disturbances.

The rest of this paper is organized as follows: Section 2 gives
the preliminaries on the conventional Lyapunov control of closed
quantum systems. In Section 3, the switching control strategy and
the implementation procedure are proposed, respectively. More-
over, the performance of open-loop Lyapunov control under dis-
turbances is discussed. Section 4 includes numerical simulations
to show the effectiveness and advantage of the proposed method.
Finally, concluding remarks are drawn in Section 5.

2. Preliminaries

Consider a finite dimensional closed quantum system, modeled
as the following Schrödinger equation

ih̄
d
dt

|Ψ ⟩ =


H0 +

r
k=1

Hkuk(t)


|Ψ ⟩,

|Ψ ⟩|t=0 = |Ψ0⟩, ∥ |Ψ0⟩ ∥ = 1,

(1)

where h̄ is the reduced Planck constant and set to be 1 in this
paper. The internal Hamiltonian H0 and the control Hamiltonian
Hk are Hermitian matrices. uk ∈ R is the control, k = 1, 2, . . . , r .
We denote |φi⟩ to be the eigenstate of H0 associated with the
eigenvalue λi, i = 1, 2, . . . , n. In this eigenbasis, a superposition
state can be described as |Ψ (t)⟩ =

n
i=1 ci(t)|φi⟩, satisfying

n
i=1

|ci|2 = 1. It evolves on the (n − 1)-dimensional complex unit
sphere Sn−1

:= {|Ψ (t)⟩ ∈ Cn
: ∥ |Ψ (t)⟩ ∥ = 1}. The objective of

this paper is to design the control uk to drive the quantum system
from an initial state |Ψ0⟩ to a prescribed target state |φf ⟩, which is
usually chosen to be an eigenstate of H0.

In the classical Lyapunov control of quantum systems, the
following two typical Lyapunov functions are defined,

V1 = ⟨Ψ |P|Ψ ⟩, V2 = 1 − |⟨Ψ |φf ⟩|
2. (2)

V1 is based on the expectation of a Hermitian operator P , and the
constructionmethod of V1 can be found in Kuang and Cong (2008).
Here, we construct P =

n
i=1 pi|φi⟩⟨φi|, where pi is the eigenvalue

of P corresponding to the eigenstate |φi⟩, i = 1, 2, . . . , n. From
|Ψ0⟩, if the eigenvalue of P corresponding to |φf ⟩ is minimal and
V1 decreases continuously under the control uk, then it will be
possible to drive the system to |φf ⟩. By constructing a different
operator P , where the minimal eigenvalue is associated with a
different eigenstate of H0, we can change the control result. This
idea will be used to construct the Hermitian operator P based
on the magnitude order of its eigenvalues. V2 is the Lyapunov
function based on the Hilbert–Schmidt distance between |Ψ ⟩ and

|φf ⟩, denoted as dist(|Ψ ⟩, |φf ⟩). The following two kinds of control
are designed to ensure V1 and V2 to be nonincreasing, respectively,

u1k = −K1kf1k(i⟨Ψ |[Hk, P]|Ψ ⟩),

u2k = K2kf2k(ℑ(ei
̸ ⟨Ψ |φf ⟩⟨φf |Hk|Ψ ⟩)),

(3)

where k = 1, 2, . . . , r, ℑ(·) is the imaginary part of a complex
number, and ̸ ⟨Ψ |φf ⟩ denotes the phase between |Ψ ⟩ and |φf ⟩. The
control gains K1k and K2k are positive, and f1k and f2k are functions
passing through the origin and satisfying fik(x)x ≥ 0, i = 1, 2. The
invariant sets can be characterized by the LaSalle invariance prin-
ciple (Kuang & Cong, 2008; Mirrahimi et al., 2005). Assuming that

(i) [H0, P] = 0, (ii) ωij ≠ ωlm, (i, j) ≠ (l,m),

(iii) pi ≠ pj, i ≠ j,
(4)

where ωij = λi − λj, i, j, l,m = 1, 2, . . . , n, the control u1k drives
the system state to the LaSalle invariant set S1 ∩ Sn−1

S1 = {|Ψ ⟩ : ⟨φi|Hk|φj⟩⟨φi|Ψ ⟩⟨Ψ |φj⟩ = 0, i ≠ j,

k = 1, 2, . . . , r}. (5)
The control u2k steers the system state to the LaSalle invariant set
S2 ∩ Sn−1

S2 = {|Ψ ⟩ : |Ψ ⟩ = Σαcα|φα⟩, ⟨φf |Hk|φα⟩ = 0,

k = 1, 2, . . . , r}. (6)
When the linearized system around the target state is not
controllable, it is difficult for the classical Lyapunov control to
achieve the state transfer, which will be simulated in Section 4.
It should be noted that S1 and S2 contain different limit points.
Moreover, the Hermitian operator P in V1 can be constructed
flexibly according to practical requirements. This motivates us to
consider a switching control of quantum systems.

3. Switching control by the Lyapunov method

3.1. Switching control design

For convenience, we rearrange the indices of the eigenstates
of H0. Let |φn⟩ be the target state. The eigenstates |φi⟩ satisfying
⟨φn|Hk|φi⟩ = 0 are denoted as |φl+1⟩, . . . , |φn−1⟩, k = 1, 2, . . . , r .
It is assumed that H0 is not λ-degenerate, i.e., there does not exist
λ such that |λi − λ| = |λj − λ|, ∀i, j ∈ {1, 2, . . . , n}. Assume that
there exists k ∈ {1, 2, . . . , r} such that ⟨φi|Hk|φj⟩ ≠ 0, i ≠ j,
except for i ∈ {l + 1, . . . , n − 1} and j = n. Even with this
relatively conservative assumption, the classical Lyapunov control
strategies fail to drive the system, as illustrated in Section 4. With
control (3), the system can only converge to the invariant set S1
or S2. In particular, under the above assumption, S1 and S2 can be
characterized as

S1 = {|Ψ ⟩ : |Ψ ⟩ = c1|φi⟩ + c2|φn⟩, |c1|2 + |c2|2 = 1,
i = l + 1, . . . , n − 1} ∪ {|φ1⟩, . . . , |φl⟩},

S2 = {|Ψ ⟩ : |Ψ ⟩ = Σn
i=l+1ci|φi⟩, Σn

i=l+1|ci|
2

= 1, ci ∈ C}.

(7)

Next, we investigate the switching control between u1k and u2k
such that the system state is driven to the intersection of S1 and
S2, k = 1, 2, . . . , r .

Theorem 1. For system (1), if conditions (4) hold and there exists k ∈

{1, 2, . . . , r} such that ⟨φi|Hk|φj⟩ ≠ 0 except for i ∈ {l + 1, . . . , n}
and j = n, the switching control sequence {u1k, u1i∗k, u2k, u1k} drives
the system to the intersection S1 ∩ S2, where u1k, u1i∗k and u1k are the
control signals based on different Hermitian operators P by assigning
different eigenstates associated with the minimal eigenvalue, k =

1, 2, . . . , r.

Proof. According to the above analysis, we prove the theorem by
constructing different Hermitian operators P . When the system
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