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a b s t r a c t

In thiswork, we study a discrete-time consensus protocol for a group of agentswhich communicate over a
class of stochastically switching networks inspired by fish schooling. The networkmodel incorporates the
phenomenon of numerosity, that plays a prominent role in the collective behavior of animal groups, by
defining the individuals’ perception of numbers. The agents comprise leaders, which share a common
state, and followers, which update their states based on information exchange among neighboring
agents. We establish a closed form expression for the asymptotic convergence factor of the protocol,
that measures the decay rate of disagreement among the followers’ and the leaders’ states. Handleable
forms of this expression are derived for the physically relevant cases of large networks whose agents are
composed of primarily leaders or followers. Numerical simulations are conducted to validate analytical
results and illustrate the consensus dynamics as a function of the number of leaders in the group, the
agents’ persuasibility, and the agents’ numerosity. We find that the maximum speed of convergence for a
given population can be enhanced by increasing the proportion of leaders in the group or the agents’
numerosity. On the other hand, we find that increasing the numerosity has also a negative effect as
it reduces the range of agents’ persuasibility for which consensus is possible. Finally, we compare the
main features of this leader–follower consensus protocol with its leaderless counterpart to elucidate the
benefits and drawbacks of leadership in numerosity-constrained random networks.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Fish schooling is a striking example of collective behavior of
social animals, in which complex ordered states emerge from local
interactions, see for example (Partridge, 1982). The distinctive
characteristics of fish schooling include highly coordinatedmotion
and relatively small inter-fish distance. Such interactions are
mediated by the perceptual capabilities of the individual fish,
which include vision and sensing of flow, electrical, and chemical
signals, as well as psychological factors such as numerosity.
Specifically, numerosity limits the perception of exact numbers
across species, including fish (Tegeder & Krause, 1995), birds
(Ballerini et al., 2008), and humans (Piazza & Izard, 2009). Recent
behavioral studies have posited that fish schools are not leaderless
societies as previously thought. Leaders are defined to be fish
who initiate new directions of locomotion readily taken up by
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the followers (Krause, Hoare, Krause, Hemelrijk, & Rubenstein,
2000). Leaders are more likely to be larger members in the
school, even if boldness and hunger may elicit followership from
peers (Krause, Reeves, & Hoare, 1998; Leblond & Reebs, 2006).
It is the social feedback between followers and leaders which
effectually determines the successful maneuvering of the group as
a cohesive unit (Couzin, Krause, Franks, & Levin, 2005; Harcourt,
Ang, Sweetman, Johnstone, & Manica, 2009).

Collective behavior has been effectivelymodeled as a consensus
protocol, that is, a distributed algorithm in which individual
agents seek agreement on a quantity of interest through iterated
negotiations, see for example the reviews (Bertsekas & Tsitsiklis,
1997; Ren & Beard, 2008). Such negotiations are informed by
an underlying network structure that determines interactions
between individuals and thus controls the information flow.
Specifically, the occurrence of an interaction between individuals
is modeled as a network edge and individuals are interpreted as
the networked nodes. The degree of a node, that is, the number of
individuals with whom an agent interacts, describes the number
of neighbors that are used for negotiating the quantity of interest.
Motivated by our earlierwork on fish schooling in annular domains
(Abaid & Porfiri, 2010) and breakthroughs in Ballerini et al. (2008),
we have introduced a new class of networks, called numerosity-
constrained networks, which incorporates the limitation imposed
by numerosity in Abaid and Porfiri (2011). Therein, we have
explored consensus over stochastically switching numerosity-
constrained networks where all agents are identical in that they
execute the same updating protocol.
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Consensus over stochastically switching networks is a relatively
untapped research topic, despite its potential for application
in biological and technological settings, such as animal groups
(Ballerini et al., 2008; Couzin et al., 2005; Harcourt et al., 2009;
Partridge, 1982) and wireless sensor networks (Erkip, Sendonaris,
Stefanov, & Aazhang, 2004). For protocols without leaders, criteria
for almost sure convergence are presented in Hatano and Mesbahi
(2005) and Huang and Manton (2010), Porfiri and Stilwell (2007),
Tahbaz-Salehi and Jadbabaie (2008), Wu (2006) for undirected
and directed communication networks, respectively, for mean
square convergence in Kar and Moura (2008) only for undirected
networks, and for Lp convergence in Liu, Lu, and Chen (2011).
The rate of convergence to consensus for undirected and directed
networks is studied in Hatano and Mesbahi (2005), Kar and Moura
(2008), Patterson, Bamieh, and Abbadi (2010) and Pereira and
Pages-Zamora (2010), Zhou and Wang (2009), respectively.

In this paper, we study a leader–follower consensus protocol
over a stochastic numerosity-constrained network inwhich agents
are either informed leaders or naive followers, see for example
(Ren & Beard, 2008). Leaders have a common state that is constant
over time, while followers update their states over time based
on information exchange among both leaders and followers.
Consensus problems for groups comprising leaders and followers
are studied for example in Hong, Hu, and Gao (2006), Khan,
Kar, and Moura (2010), Meng, Ren, Cao, and You (2011), Song,
Cao, and Yu (2010), Yu, Chen, and Cao (2010), Zhu and Cheng
(2010). These works assume that the underlying network of
communication among leaders and followers is either static (Khan
et al., 2010; Meng et al., 2011; Song et al., 2010) or varying
over time according to a predefined (Hong et al., 2006; Zhu &
Cheng, 2010) or state-dependent switching pattern (Yu et al.,
2010). Here, we take a different approach aswe focus on stochastic
leader–follower consensus to establish necessary and sufficient
conditions for mean square consentability based on a closed form
expression for the rate of convergence to consensus. The derived
closed form expression allows us to dissect the effect of the
multiple factors determining the feasibility of achieving consensus
in leader–follower numerosity-constrained random networks and
its performance; these factors include the number of agents,
the proportion of leaders/followers, the agents’ numerosity, and
the agents’ persuasibility. The technical approach used in the
derivation of such closed form result shares similarities with the
methodology presented in Abaid and Porfiri (2011) that is based
on the exact computation of the eigenstructure of a higher order
state matrix, yet the presence of two types of agents introduces
more complex algebraic structures than (Abaid & Porfiri, 2011).

2. Problem statement

We consider a system of N agents, comprising l leaders and
f followers, f , l ∈ {1, 2, 3, . . .}, which update their states based
on communication over a directed network with a stochasti-
cally switching numerosity-constrained topology. Neighbors in the
communication network are defined as agents who unidirection-
ally communicate state information. At time step k ∈ Z+, we de-
scribe the communication network through the graph Laplacian
Lk ∈ RN×N , see for example (Bollobas, 1998). According to the
numerosity-constrained topology, each agent has n ∈ {1, 2, . . . ,
N − 1} neighbors chosen with equal probability from all other
agents. More specifically, the ith row of Lk has diagonal entry equal
to n and offdiagonal entries comprising n ‘‘−1’s’’ and N − n − 1
‘‘0’s’’ and each combination of these N − 1 entries is equally likely.
The stochastic network can be viewed as a sequence of indepen-
dent identically distributed (IID) matrices {Lk}∞k=0 with common
random variable L. We notice that Lk has the zero row-sum prop-
erty Lk1N = 0N and is not necessarily symmetric due to the unidi-
rectional communication among agents.

At time step k ∈ Z+, the agents’ states are given by the vector
Xk = [xTk yTk]

T
∈ RN , where xk ∈ Rf is the state vector for the

followers, yk ∈ Rl is the state vector for the leaders, and superscript
T denotes the matrix transpose. The full state vector Xk is updated
according to the discrete-time consensus protocol

Xk+1 = (IN − ELk)Xk, (1)

with initial condition X0 = [xT0 s1
T
l ]

T for x0 ∈ Rf and s ∈ R. Thema-
trix E ∈ RN×N is the diagonal matrix diag


[ε1T

f 0
T
l ]

T

with ε ∈ R+,

where the operator diag(·) takes the ith entry of an N × 1 vec-
tor to the ith diagonal entry of an N × N diagonal matrix. In other
words, the leaders share common initial states which are not up-
dated in the protocol, while the followers update their states over
time according to those of their neighbors,mediated to aweighting
parameter ε which describes their persuasibility (Abaid & Porfiri,
2011). We say that agents achieve consensus when the followers
take the leaders’ state, that is, when Xk = s1N . We note that the
state matrix in (1) is not required to be nonnegative, unlike most
of state matrices studied in the literature for consensus problems
(Hatano &Mesbahi, 2005; Porfiri & Stilwell, 2007; Tahbaz-Salehi &
Jadbabaie, 2008, 2010).

In the remainder of the paper, we use the following notation.
The vector ei is the ith column of the identity matrix If . The
vectorizing function vec(·) stacks the columns of an N ×M matrix
to create an NM ×1 column vector. The Euclidean norm of a vector
is denoted by ∥ · ∥. The operation ⊗ is the Kronecker product. The
expected value of a random variable is written E[·].

3. Analysis

The consensus problem (1) is reduced to the subsystem
describing the followers’ states xk since the leaders do not update
their state s over time. Specifically, we write the first f rows of Lk
as the augmented matrix [Lk Kk], whereLk ∈ Rf×f andKk ∈ Rf×l.
From the definition of Lk, [LkKk] has zero-row sum and {Lk}∞k=0 is a
sequence of IID randomvariables,whose common randomvariable
we write asL. Using this block structure in (1), we isolate the
f -dimensional followers subsystem

xk+1 = (If − εLk)xk − εsKk1l. (2)

We define the disagreement ξk ∈ Rf as the difference between the
followers’ and the leaders’ states, that is, ξk = xk−s1f . Substituting
this definition into (2) and using the zero-row sum property of
[LkKk], the disagreement dynamics is

ξk+1 = (If − εLk)ξk. (3)

We say that (1) is mean square consentable if the disagreement
dynamics in (3) is (asymptotically) mean square stable, that is, if
limk→∞ E[∥ξk∥2

] = 0 for any ξ0 ∈ Rf , see for example (Abaid &
Porfiri, 2011).We comment that, although the focus of this paper is
onmean square stability, equivalences with other secondmoment
stabilities canbe found, for example, in Feng, Loparo, Ji, andChizeck
(1992).

Following Zhou and Wang (2009), we use the asymptotic
convergence factor of the error dynamics (3) to ascertain themean
square consentability of (1). This quantity is defined as

ra = sup
∥ξ0∥≠0

lim
k→∞


E

∥ξk∥

2


∥ξ0∥2

1/k

(4)

and it is less than one if and only if the system is mean square
consentable, see for example (Abaid & Porfiri, 2011). The expected
value of the disagreement norm can be written as E


∥ξk∥

2


=

vec(If )Tvec(E[ξkξ T
k ]). By iteratively applying equation (3), this
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